10 - Mathematics Special Test-1

Time: 3.00 Hrs] Geometry, Graph, One mark (Unit - 1,2,3,4)
[Marks:100
I. Choose the most suitable answer. Answer all the 60 questions: $(60 \times 1=60)$

1. If $n(A \times B)=6$ and $A=\{1,3\}$ then $n(B)$ is
(1) 1
(2) 2
(3) 3
(4) 6
2. Euclid's division lemma states that for positive integers a and b, there exist unique integers q and r such that $a=b q+r$, where r must satisfy
(1) $1<r<b$
(2) $0<r<b$
(3) $0 \leq r<b$
(4) $0<r \leq b$
3. If $f(x)=x^{2}+5$, then $f(-4)=$
(1) 26
(2) 21
(3) 20
(4) -20
4. If number of columns and rows are not equal in a matrix then it is said to be a
(1) diagonal matrix
(2) rectangular matrix
(3) square matrix
(4) identity matrix
5. $f(x)=(x+1)^{3}-(x-1)^{3}$ represents a function which is
(1) linear
(2) cubic
(3) reciprocal
(4) quadratic
6. The number of points of intersection of the quadratic polynomial $x^{2}+4 x+4$ with the X axis is
(1) 0
(2) 1
(3) 0 or 1
(4) 2
7. If in triangles $A B C$ and $E D F, \frac{A B}{D E}=\frac{B C}{F D}$, then they will be similar, when
(1) $\angle B=\angle E$
(2) $\angle A=\angle D$
(3) $\angle B=\angle D$
(4) $\angle A=\angle F$
8. $A=\{a, b, p\}, B=\{2,3\}, C=\{p, q, r, s\}$ then $n[(A \cup C) \times B]$ is
(1) 8
(2) 20
(3) 12
(4) 16
9. Using Euclid's division lemma, if the cube of any positive integer is divided by 9 then the
possible remainders are
(1) $0,1,8$
(2) $1,4,8$
(3) $0,1,3$
(4) $1,3,5$
10. In a triangle, the internal bisector of an angle bisects the opposite side. Find the nature of the triangle (1) right angle (2) equilateral (3) scalene (4) isosceles
11. If $A=\{1,2\}, B=\{1,2,3,4\}, C=\{5,6\}$ and $D=\{5,6,7,8\}$ then state which of the following statement is true. (1) $(A \times C) \subset(B \times D)$
(2) $(B \times D) \subset(A \times C)$
(3) $(A \times B) \subset(A \times D)$
(4) $(D \times A) \subset(B \times A)$
12. If the HCF of 65 and 117 is expressible in the form of $65 m-117$, then the value of m is
(1) 4
(2) 2
(3) 1
(4) 3
13. The values of a and b if $4 x^{4}-24 x^{3}+76 x^{2}+a x+b$ is a perfect square are
(1) 100,120
(2) 10,12
(3) $-120,100$
(4) 12,10
14. If $\triangle A B C$ is an isosceles triangle with $\angle \mathrm{C}=90^{\circ}$ and $A C=5 \mathrm{~cm}$, then $A B$ is
(1) 2.5 cm
(2) 5 cm
(3) 10 cm
(4) $5 \sqrt{2} \mathrm{~cm}$
15. If there are 1024 relations from a set $A=\{1,2,3,4,5\}$ to a set B, then the number of elements in B is (1) 3 (2) 2 (3) 4 (4) 8
16. The sum of the exponents of the prime factors in the prime factorization of 1729 is
(1) 1
(2) 2
(3) 3
(4) 4
17. Which one of the following is true for any two square matrices A and B of same order?
(1) $(A B)^{T}=A^{T} B^{T}$
(2) $\left(A^{T} B\right)^{T}=A^{T} B^{T}$
(3) $(A B)^{T}=B A$
(4) $(A B)^{T}=B^{T} A^{T}$
18. The perimeters of two similar triangles $\triangle A B C$ and $\triangle P Q R$ are 36 cm and 24 cm respectively. If $P Q=10 \mathrm{~cm}$, then the length of $A B$ is
(1) $6 \frac{2}{3} \mathrm{~cm}$
(2) $\frac{10 \sqrt{6}}{3} \mathrm{~cm}$
(3) $66 \frac{2}{3} \mathrm{~cm}$
(4) 15 cm
19. The function $f: \mathbb{N} \rightarrow \mathbb{N}$ is defined by $f(x)=2 x$ then the function f is
(1) Not one-one but onto
(2) one-one but not onto
(2) One-one and onto
(4) not one-one and not onto
20. The least number that is divisible by all the numbers from 1 to 10 (both inclusive) is
(1) 2025
(2) 5220
(3) 5025
(4) 2520
21. If in $\triangle A B C, D E \| B C . A B=3.6 \mathrm{~cm}, A C=2.4 \mathrm{~cm}$ and $A D=2.1 \mathrm{~cm}$ then the length of $A E$
is
(1) 1.4 cm
(2) 1.8 cm
(3) 1.2 cm
(4) 1.05 cm
22. If the ordered pairs $(a+2,4)$ and $(5,2 a+b)$ are equal then (a, b) is
(1) $(2,-2)$
(2) $(5,1)$
(3) $(2,3)$
(4) $(3,-2)$
23. If the roots of the equation $q^{2} x^{2}+p^{2} x+r^{2}=0$ are the squares of the roots of the equation $q x^{2}+p x+r=0$, then q, p, r are in \qquad
(1) A. P
(2) G.P
(3) Both A.P and G.P
(4) none of these
24. In a $\triangle A B C, A D$ is the bisector of $\angle B A C$. If $A B=8 \mathrm{~cm}, B D=6 \mathrm{~cm}$ and $D C=3 \mathrm{~cm}$. The length of the side $A C$ is
(1) 6 cm
(2) 4 cm
(3) 3 cm
(4) 8 cm
25. If $t_{n}=3-5 n$ is the nth term of an A.P. sequence, then its first term and common
difference is
(1) $3,-5$
(2) $-3,-5$
(3) $-3,5$
(4) $-2,-5$
26. Let $n(A)=m$ and $n(B)=n$ then the total number of non-empty relations that can be defined from A to B is
(1) m^{n}
(2) n^{m}
(3) $2^{m n}-1$
(4) $2^{m n}$
27. Given $F_{1}=1, F_{2}=3$ and $F_{n}=F_{n-1}+F_{n-2}$ then F_{5} is
(1) 3
(2) 5
(3) 8
(4) 11
28. Which of the following can be calculated from the given matrices $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right)$ and
$\mathrm{B}=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)$,
(ii) B^{2}
(iii) $A B$
(1) (i) and (ii) only
(2) (ii) and (iii) only
(3) (ii) and (iv) only
(4) all of these
(iv) $B A$
29. Two poles of heights 6 m and 11 m stand vertically on a plane ground. If the distance between their feet is 12 m , what is the distance between their tops?
(1) 13 m
(2) 14 m
(3) 15 m
(4) 12.8 m
30. If $\{(a, 8),(6, b)\}$ represents an identity function, then the value of a and b are respectively
(1) $(8,6)$
(2) $(8,8)$
(3) $(6,8)$
(4) $(6,6)$
31. If the sequence $t_{1}, t_{2}, t_{3}, \ldots$ are in A.P. then the sequence $t_{6}, t_{12}, t_{18}, \ldots$ is
(1) a Geometric Progression
(2) an Arithmetic Progression
(3) neither an A.P. nor a G.P.
(4) a constant sequence
32. Which of the following should be added to make $x^{4}+64$ a perfect square
(1) $4 x^{2}$
(2) $16 x^{2}$
(3) $8 x^{2}$
(4) $-8 x^{2}$
33. Let $A=\{1,2,3,4\}$ and $B=\{4,8,9,10\}$. A function $f: A \rightarrow B$ given by $f=$
$\{(1,4),(2,8),(3,9),(4,10)\}$ is a
(1) Many-one function
(2) Identity function
(3) One-to-one function
(4) Into function
34. The value of $\left(1^{3}+2^{3}+3^{3}+\cdots+15^{3}\right)-(1+2+3+\ldots+15)$ is
(1) 14400
(2) 14200
(3) 14280
(4) 14520
35. A tangent is perpendicular to the radius at the
(1) centre
(2) point of contact
(3) infinity
(4) chord
36. If $f(x)=\frac{1}{x}$ and $g(x)=\frac{1}{x^{3}}$, then $f \circ g \circ f(y)$ is
(1) $\frac{1}{y^{8}}$
(2) $\frac{1}{y^{6}}$
(3) $\frac{1}{y^{4}}$
(4) $\frac{1}{y^{3}}$
37. If A is a 2×3 matrix and B is a 3×4 matrix, how many columns does $A B$ have
(1) 3
(2) 4
(3) 2
(4) 5
38. How many tangents can be drawn to the circle from an exterior point?
(1) one
(2) two
(3) infinite
(4) zero
39. If $f: A \rightarrow B$ is a bijective function and if $n(B)=7$, then $n(A)$ is equal to
(1) 7
(2) 49
(3) 1
(4) 14
40. If $A=2^{65}$ and $B=2^{64}+2^{63}+2^{62}+\ldots+2^{0}$ which of the following is true?
(1) B is 2^{64} more than A
(2) A and B are equal
(3) B is larger than A by 1
(4) A is larger than B by 1
41. Which of the following are linear equation in three variables
(i) $2 x=z$
(ii) $2 \sin x+y \cos y+z \tan z=2$
(iii) $x+2 y^{2}+z=3$
(iv) $x-y-z=7$
(1) (i) and (iii) only
(2) (i) and (iv) only
(3) (iv) only
(4) All
42. The two tangents from an external points P to a circle with centre at O are $P A$ and $P B$. If $\angle A P B=70^{\circ}$ then the value of $\angle A O B$ is
(1) 100°
(2) 110°
(3) 120°
(4) 130°
43. Let f and g be two functions given by
$f=\{(0,1),(2,0),(3,-4),(4,2),(5,7)\}$
$g=\{(0,2),(1,0),(2,4),(-4,2),(7,0)\}$ then the range of $f \circ g$ is
(1) $\{0,2,3,4,5\}$
(2) $\{-4,1,0,2,7\}$
(3) $\{1,2,3,4,5\}$
(4) $\{0,1,2\}$
44. The next term of the sequence $\frac{3}{16}, \frac{1}{8}, \frac{1}{12}, \frac{1}{18}, \ldots$ is
(1) $\frac{1}{24}$
(2) $\frac{1}{27}$
(3) $\frac{2}{3}$
(4) $\frac{1}{81}$
45. $y^{2}+\frac{1}{y^{2}}$ is not equal to
(1) $\frac{y^{4}+1}{y^{2}}$
(2) $\left[y+\frac{1}{y}\right]^{2}$
(3) $\left[y-\frac{1}{y}\right]^{2}+2$
(4) $\left[y+\frac{1}{y}\right]^{2}-2$
46. The s.quare root of $\frac{256 x^{8} y^{4} z^{10}}{25 x^{6} y^{6} z^{6}}$ is equal to
(1) $\frac{16}{5}\left|\frac{x^{2} z^{4}}{y^{2}}\right|$
(2) $\frac{16}{5}\left|\frac{y^{2}}{x^{2} z^{4}}\right|$
(3) $\frac{16}{5}\left|\frac{y}{x z^{2}}\right|$
(4) $\frac{16}{5}\left|\frac{x z^{2}}{y}\right|$
47. The Pythagorean triplet constructed by using the consecutive odd numbers 3 and 5 is
(1) $(8,15,17)$
(2) $(3,4,5)$
(3) $(5,12,13)$
(4) $(9,12,15)$
48. Let $f(x)=\sqrt{1+x^{2}}$ then
(1) $f(x y)=f(x) \cdot f(y)$
(2) $f(x y) \geq f(x) \cdot f(y)$
(3) $f(x y) \leq f(x) \cdot f(y)$
(4) None of these
49. If 6 times of $6^{\text {th }}$ term of an A.P. is equal to 7 times the $7^{\text {th }}$ term, then the $13^{\text {th }}$ term of the
A.P. is (1) 0
(2) 6
(3) 7
(4) 13
50. For the given matrix $A=\left[\begin{array}{rrlc}1 & 3 & 5 & 7 \\ 2 & 4 & 6 & 8 \\ 9 & 11 & 13 & 15\end{array}\right]$ the order of the matrix A^{T} is
(1) 2×3
(2) 3×2
(3) 3×4
(4) 4×3
51. The first term of an A.P. whose $8^{\text {th }}$ and $12^{\text {th }}$ terms are 39 and 59 respectively is
(1) 5
(2) 6
(3) 4
(4) 3
52. If $(x-6)$ is the HCF of $x^{2}-2 x-24$ and $x^{2}-k x-6$ then the value of k is
(1) 3
(2) 5
(3) 6
(4) 8
53. $\frac{3 y-3}{y} \div \frac{7 y-7}{3 y^{2}}$ is
(1) $\frac{9 y}{7}$
(2) $\frac{9 y^{3}}{(21 y-21)}$
(3) $\frac{21 y^{2}-42 y+21}{3 y^{3}}$
(4) $\frac{7\left(y^{2}-2 y+1\right)}{y^{2}}$
54. If $g=\{(1,1),(2,3),(3,5),(4,7)\}$ is a function given by $g(x)=\alpha x+\beta$ then the values of α and β are (1) ($-1,2$) (2, -1) (3) ($-1,-2$) (4) $(1,2)$
55. An A.P. consists of 31 terms. If its $16^{\text {th }}$ term is m, then the sum of all the terms of this A.P.
is
(1) 16 m
(2) 62 m
(3) 31 m
(4) $\frac{31}{2} \mathrm{~m}$
56. If α and β are the roots of $a x^{2}+b x+c=0$, then one of the quadratic equations whose
roots are $\frac{1}{\alpha}$ and $\frac{1}{\beta}$ is
(1) $a x^{2}+b x+c=0$
(2) $b x^{2}+a x+c=0$
(3) $c x^{2}+b x+a=0$
(4) $c x^{2}+a x+b=0$
57. The first term of an arithmetic progression is unity and the common difference is 4. Which of the following will be a term of this A.P.
(1) 4551
(2) 10091
(3) 7881
(4) 13531
58. A system of three linear equations in three variables is inconsistent if their planes
(1) intersect only at a point
(2) intersect in a line
(3) coincides with each other
(4) do not intersect
59. Find the matrix X if $2 X+\left(\begin{array}{ll}1 & 3 \\ 5 & 7\end{array}\right)=\left(\begin{array}{ll}5 & 7 \\ 9 & 5\end{array}\right)$
(1) $\left(\begin{array}{rr}-2 & -2 \\ 2 & -1\end{array}\right)$
(2) $\left(\begin{array}{rr}2 & 2 \\ 2 & -1\end{array}\right)$
(3) $\left(\begin{array}{ll}1 & 2 \\ 2 & 2\end{array}\right)$
(4) $\left(\begin{array}{ll}2 & 1 \\ 2 & 2\end{array}\right)$
60. In figure $C P$ and $C Q$ are tangents to a circle with centre at O. $A R B$ is another tangent touching the circle at R. If $C P=11 \mathrm{~cm}$ and $B C=7 \mathrm{~cm}$, then the length of $B R$ is
(1) 6 cm
(2) 5 cm
(3) 8 cm
(4) 4 cm

II. Answer ALL the questions: $(5 \times 8=40)$
61. Construct a triangle similar to a given triangle $L M N$ with its sides equal to $\frac{4}{5}$ of the corresponding sides of the triangle $L M N$ (scale factor $\frac{4}{5}$)
62. Draw a triangle $A B C$ of base $B C=5.6 \mathrm{~cm}, \angle A=40^{\circ}$ and the bisector of $\angle A$ meets $B C$ at D such that $C D=4 \mathrm{~cm}$.
63. Draw a circle of radius 4.5 cm . Take a point on the circle. Draw the tangent at that point using the alternate - segment theorem.
64. Graph the quadratic equation for $x^{2}-4 x+4=0$ and state its nature of solution.
65. Draw the graph of $y=x^{2}-4$ and hence solve $x^{2}-x-12=0$.

Alb the Best!

