10 - <u>Mathematics</u> <u>Special Test - 1</u>

Time	: 3.00 Hrs] G	eometry, Graph, On	e mark (Unit – 1,2,3	3,4) [Marks:100		
I. Choose the most suitable answer. Answer all the 60 questions: $(60 \times 1 = 60)$						
1.	If $n(A \times B) = 6$ and A	$A = \{1, 3\}$ then $n(B)$ is				
	(1) 1	(2) 2	(3) 3	(4) 6		
2.	Euclid's division le	mma states that for p	ositive integers a a	nd <i>b</i> , there exist unique		
	integers q and r such	ch that $a = bq + r$, w	where <i>r</i> must satisfy			
	(1) $1 < r < b$	(2) $0 < r < b$	$(3) 0 \leq r < b$	$(4) 0 < r \leq b$		
3.	If $f(x) = x^2 + 5$, then	f(-4) =	(2) 22	(4) 60		
	(1) 26	(2) 21	(3) 20	(4) -20		
4.	If number of columns and rows are not equal in a matrix then it is said to be a					
	(1) diagonal matrix		(2) rectangular m	atrix		
-	(3) square matrix $f_{1}(x) = (x + 1)^{3}$	(1)3	(4) identity matri	X		
5.	$f(x) = (x + 1)^{3}$	$-(x-1)^\circ$ represents	s a function which is	(1) and deating		
6	(1) Intear	(2) CUDIC	(3) reciprocal	(4) quadratic		
6.	V evicie (1	$\frac{1}{2}$	the quadratic polynom	$\begin{array}{c} \text{max} x^2 + 4x + 4 \text{with the} \\ x^4 & (4) \end{array}$		
	A axis is (1) U (2) 4B BC	1 (3) 0 0	r = (4) Z		
7.	If in triangles <i>ABC</i>	and EDF , $\frac{AB}{DE} = \frac{BC}{FD}$,	then they will be simi	lar, when		
	(1) $\angle B = \angle E$	$(2) \angle A = \angle D$	$(3) \angle B = \angle D$	$(4) \angle A = \angle F$		
8.	$A = \{a, b, p\}, B =$	$\{2,3\}, C = \{p,q,r,s\}$	then $n[(A \cup C) \times A]$	8] is		
	(1) 8	(2) 20	(3) 12	(4) 16		
9.	Using Euclid's divis	ion lemma, if the cube	of any positive intege	er is divided by 9 then the		
	possible remainders	s are (1) 0, 1, 8	(2) 1, 4, 8	(3) 0, 1, 3 (4) 1, 3, 5		
10.	In a triangle, the int	ernal bisector of an ar	igle bisects the opposi	te side. Find the nature of		
	the triangle (1)	right angle (2) ec	quilateral (3) sca	alene (4) isosceles		
11.	If $A = \{1, 2\}, B =$	$\{1, 2, 3, 4\}, C = \{5,\}$	6} and $D = \{5, 6, 7, 8\}$	3} then state which of the		
	following statemen	t is true. (1) $(A \times C)$	$\subset (B \times D) \tag{2}$	$(B \times D) \subset (A \times C)$		
10		$(3) (A \times B) $	$= (A \times D) \qquad (4)$	$(D \times A) \subset (B \times A)$		
12.	If the HLF of 65 and (1)	1 117 is expressible in	the form of $65m - 1$	17, then the value of m is		
10	(1) 4 The values of a on	(2)2	(3) 1	(4) 3		
13.	(1) 100 120	$u \ b \ ll \ 4x \ -24x^{2} + 7$	bx + ux + b is a per	(4) 12 10		
14	(1) 100, 120	(2) 10, 12	(3) = 120, 100 = 90° and 4C = 5 cm s	(4) 12, 10		
14.	(1) 25	$(2) \int dx = \frac{1}{2} $	= 90 allu AC $= 5$ clii,	$(A) \subseteq \sqrt{2} = m$		
1 -	$(1) 2.5 \ cm$	(2) 5 cm	(3) 10 cm	$(4) 5 \sqrt{2} cm$		
15.	Il there are 1024 r	(1) 2	$= \{1, 2, 3, 4, 5\}$ to a s	Set <i>B</i> , then the number of (2) (4) 0		
16	The sum of the own	(1) of the prime	(2) 2	(3)4 $(4)0$		
10.	(1) 1	(2) 2		(A) A		
(1) 1 (2) (3) (4) $(4$						
1/.	(1) $(AB)^T = A^T B^T$	$(2) (A^T R)^T = A^T R$	R^T (3) $(AR)^T = R$	$A \qquad (4) (AR)^T = R^T A^T$		
		(-) $(12) = 112$	(0) (10) $=$ D	(1)(112) = D II		

respectively. If $PQ = 10 \ cm$, then the length of <i>AB</i> is						
(1) $6\frac{2}{2}$ cm (2) $\frac{10\sqrt{6}}{2}$ cm (3) $66\frac{2}{2}$ cm (4) 15 cm						
19. The function $f: \mathbb{N} \to \mathbb{N}$ is defined by $f(x) = 2x$ then the function f is						
(1) Not one-one but onto (2) one-one but not onto						
(2) One-one and onto (4) not one-one and not onto						
20. The least number that is divisible by all the numbers from 1 to 10 (both inclusive) is						
(1) 2025 (2) 5220 (3) 5025 (4) 2520						
21. If in $\triangle ABC$, DE BC. $AB = 3.6 \text{ cm}$, $AC = 2.4 \text{ cm}$ and $AD = 2.1 \text{ cm}$ then the length of AE						
is (1) 1.4 cm (2) 1.8 cm (3) 1.2 cm (4) 1.05 cm						
22. If the ordered pairs $(a + 2, 4)$ and $(5, 2a + b)$ are equal then (a, b) is						
(1) (2, -2) (2) (5, 1) (3) (2, 3) (4) (3, -2)						
23. If the roots of the equation $q^2x^2 + p^2x + r^2 = 0$ are the squares of the roots of the						
equation $qx^2 + px + r = 0$, then q, p, r are in						
(1)A.P (2) G.P (3) Both A.P and G.P (4) none of these						
24. In a $\triangle ABC$, AD is the disector of $\angle BAC$. If $AB = 8$ cm, $BD = 6$ cm and $DC = 3$ cm. The						
$\begin{array}{cccc} Init of the side AC is (1) o cline (2) 4 cline (3) 5 cline (4) o cline (4) 0 c$						
difference is (1) 3, -5 (2) -3, -5 (3) -3, 5 (4) -2, -5						
26. Let $n(A) = m$ and $n(B) = n$ then the total number of non-empty relations that can be						
defined from A to B is (1) m^n (2) n^m (3) $2^{mn} - 1$ (4) 2^{mn}						
27. Given $F_1 = 1$, $F_2 = 3$ and $F_n = F_{n-1} + F_{n-2}$ then F_5 is						
(1) 3 (2) 5 (3) 8 (4) 11						
$\begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$						
28. Which of the following can be calculated from the given matrices $A = \begin{pmatrix} 3 & 4 \\ 5 & 6 \end{pmatrix}$ and						
$(1 \ 2 \ 3)$						
$B = \begin{pmatrix} 4 & 5 & 6 \\ 4 & 5 & 6 \end{pmatrix}, (i) A^2 \qquad (ii) B^2 \qquad (iii) AB \qquad (iv) BA$						
$B = \begin{pmatrix} 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}, (i) A^2 \qquad (ii) B^2 \qquad (iii) AB \qquad (iv) BA$						
$B = \begin{pmatrix} 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}, (i) A^2 \qquad (ii) B^2 \qquad (iii) AB \qquad (iv) BA$ (1) (i) and (ii) only (2) (ii) and (iii) only (2) (ii) and (iii) only (2) (ii) and (iii) only (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)						
$B = \begin{pmatrix} 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}, (i) A^{2} \qquad (ii) B^{2} \qquad (iii) AB \qquad (iv) BA$ (1) (i) and (ii) only (2) (ii) and (iii) only (3) (ii) and (iv) only (4) all of these						
$B = \begin{pmatrix} 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}, (i) A^{2} \qquad (ii) B^{2} \qquad (iii) AB \qquad (iv) BA$ (1) (i) and (ii) only (2) (ii) and (iii) only (3) (ii) and (iv) only (4) all of these 29. Two poles of heights 6 m and 11 m stand vertically on a plane ground. If the distance between their fact is 12 m what is the distance between their targ?						
$B = \begin{pmatrix} 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}, (i) A^{2} \qquad (ii) B^{2} \qquad (iii) AB \qquad (iv) BA$ (1) (i) and (ii) only (2) (ii) and (iii) only (3) (ii) and (iv) only (4) all of these 29. Two poles of heights 6 m and 11 m stand vertically on a plane ground. If the distance between their feet is 12 m, what is the distance between their tops? (1) 12 m (2) 14 m (2) 15 m (4) 12.8 m						
$B = \begin{pmatrix} 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}, (i) A^{2} \qquad (ii) B^{2} \qquad (iii) AB \qquad (iv) BA$ (1) (i) and (ii) only (2) (ii) and (iii) only (3) (ii) and (iv) only (4) all of these 29. Two poles of heights 6 m and 11 m stand vertically on a plane ground. If the distance between their feet is 12 m, what is the distance between their tops? (1) 13 m (2) 14 m (3) 15 m (4) 12.8 m 30. If $\{(a, B), (6, h)\}$ represents an identity function, then the value of a and h are respectively.						
$B = \begin{pmatrix} 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}, (i) A^{2} \qquad (ii) B^{2} \qquad (iii) AB \qquad (iv) BA$ (1) (i) and (ii) only (2) (ii) and (iii) only (3) (ii) and (iv) only (4) all of these 29. Two poles of heights 6 m and 11 m stand vertically on a plane ground. If the distance between their feet is 12 m, what is the distance between their tops? (1) 13 m (2) 14 m (3) 15 m (4) 12.8 m 30. If {(a, 8), (6, b)} represents an identity function, then the value of a and b are respectively (1) (8 6) (2) (8 8) (3) (6 8) (4) (6 6)						
$B = \begin{pmatrix} 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}, (i) A^{2} \qquad (ii) B^{2} \qquad (iii) AB \qquad (iv) BA$ (1) (i) and (ii) only (2) (ii) and (iii) only (3) (ii) and (iv) only (4) all of these 29. Two poles of heights 6 m and 11 m stand vertically on a plane ground. If the distance between their feet is 12 m, what is the distance between their tops? (1) 13 m (2) 14 m (3) 15 m (4) 12.8 m 30. If {(a, 8), (6, b)} represents an identity function, then the value of <i>a</i> and <i>b</i> are respectively (1) (8, 6) (2) (8, 8) (3) (6, 8) (4) (6, 6) 31. If the sequence to take the take take take take take take take tak						
$B = \begin{pmatrix} 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}, (i) A^{2} \qquad (ii) B^{2} \qquad (iii) AB \qquad (iv) BA$ (1) (i) and (ii) only (2) (ii) and (iii) only (3) (ii) and (iv) only (4) all of these 29. Two poles of heights 6 m and 11 m stand vertically on a plane ground. If the distance between their feet is 12 m, what is the distance between their tops? (1) 13 m (2) 14 m (3) 15 m (4) 12.8 m 30. If {(a, 8), (6, b)} represents an identity function, then the value of <i>a</i> and <i>b</i> are respectively (1) (8, 6) (2) (8, 8) (3) (6, 8) (4) (6, 6) 31. If the sequence t_1, t_2, t_3, \dots are in A.P. then the sequence $t_6, t_{12}, t_{13}, \dots$ is (1) a Geometric Progression (2) an Arithmetic Progression						
$B = \begin{pmatrix} 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}, (i) A^{2} \qquad (ii) B^{2} \qquad (iii) AB \qquad (iv) BA$ (1) (i) and (ii) only (2) (ii) and (iii) only (3) (ii) and (iv) only (4) all of these 29. Two poles of heights 6 m and 11 m stand vertically on a plane ground. If the distance between their feet is 12 m, what is the distance between their tops? (1) 13 m (2) 14 m (3) 15 m (4) 12.8 m 30. If {(a, 8), (6, b)} represents an identity function, then the value of <i>a</i> and <i>b</i> are respectively (1) (8, 6) (2) (8, 8) (3) (6, 8) (4) (6, 6) 31. If the sequence $t_1, t_2, t_3,$ are in A.P. then the sequence $t_6, t_{12}, t_{18},$ is (1) a Geometric Progression (2) an Arithmetic Progression (3) neither an A.P. nor a G.P. (4) a constant sequence						
$B = \begin{pmatrix} 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}, (i) A^{2} \qquad (ii) B^{2} \qquad (iii) AB \qquad (iv) BA$ (1) (i) and (ii) only (2) (ii) and (iii) only (3) (ii) and (iv) only (4) all of these 29. Two poles of heights 6 m and 11 m stand vertically on a plane ground. If the distance between their feet is 12 m, what is the distance between their tops? (1) 13 m (2) 14 m (3) 15 m (4) 12.8 m 30. If {(a, 8), (6, b)} represents an identity function, then the value of <i>a</i> and <i>b</i> are respectively (1) (8, 6) (2) (8, 8) (3) (6, 8) (4) (6, 6) 31. If the sequence $t_1, t_2, t_3,$ are in A.P. then the sequence $t_6, t_{12}, t_{18},$ is (1) a Geometric Progression (2) an Arithmetic Progression (3) neither an A.P. nor a G.P. (4) a constant sequence 32. Which of the following should be added to make $x^4 + 64$ a perfect square						
$B = \begin{pmatrix} 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}, (i) A^{2} \qquad (ii) B^{2} \qquad (iii) AB \qquad (iv) BA$ (1) (i) and (ii) only (2) (ii) and (iii) only (3) (ii) and (iv) only (4) all of these 29. Two poles of heights 6 m and 11 m stand vertically on a plane ground. If the distance between their feet is 12 m, what is the distance between their tops? (1) 13 m (2) 14 m (3) 15 m (4) 12.8 m 30. If {(a, 8), (6, b)} represents an identity function, then the value of <i>a</i> and <i>b</i> are respectively (1) (8, 6) (2) (8, 8) (3) (6, 8) (4) (6, 6) 31. If the sequence $t_1, t_2, t_3,$ are in A.P. then the sequence $t_6, t_{12}, t_{18},$ is (1) a Geometric Progression (2) an Arithmetic Progression (3) neither an A.P. nor a G.P. (4) a constant sequence 32. Which of the following should be added to make $x^4 + 64$ a perfect square (1) $4x^2$ (2) $16x^2$ (3) $8x^2$ (4) $-8x^2$						
$B = \begin{pmatrix} 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}, (i) A^{2} \qquad (ii) B^{2} \qquad (iii) AB \qquad (iv) BA$ (1) (i) and (ii) only (2) (ii) and (iii) only (3) (ii) and (iv) only (4) all of these 29. Two poles of heights 6 m and 11 m stand vertically on a plane ground. If the distance between their feet is 12 m, what is the distance between their tops? (1) 13 m (2) 14 m (3) 15 m (4) 12.8 m 30. If {(a,8), (6,b)} represents an identity function, then the value of a and b are respectively (1) (8, 6) (2) (8, 8) (3) (6, 8) (4) (6, 6) 31. If the sequence t_1, t_2, t_3, \dots are in A.P. then the sequence $t_6, t_{12}, t_{18}, \dots$ is (1) a Geometric Progression (2) an Arithmetic Progression (3) neither an A.P. nor a G.P. (4) a constant sequence 32. Which of the following should be added to make $x^4 + 64$ a perfect square (1) $4x^2$ (2) $16x^2$ (3) $8x^2$ (4) $-8x^2$ 33. Let $A = \{1, 2, 3, 4\}$ and $B = \{4, 8, 9, 10\}$. A function $f : A \rightarrow B$ given by $f =$						
$B = \begin{pmatrix} 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}, (i) A^{2} \qquad (ii) B^{2} \qquad (iii) AB \qquad (iv) BA$ (1) (i) and (ii) only (2) (ii) and (iii) only (3) (ii) and (iv) only (4) all of these 29. Two poles of heights 6 m and 11 m stand vertically on a plane ground. If the distance between their feet is 12 m, what is the distance between their tops? (1) 13 m (2) 14 m (3) 15 m (4) 12.8 m 30. If {(a, 8), (6, b)} represents an identity function, then the value of <i>a</i> and <i>b</i> are respectively (1) (8, 6) (2) (8, 8) (3) (6, 8) (4) (6, 6) 31. If the sequence $t_1, t_2, t_3,$ are in A.P. then the sequence $t_6, t_{12}, t_{18},$ is (1) a Geometric Progression (2) an Arithmetic Progression (3) neither an A.P. nor a G.P. (4) a constant sequence 32. Which of the following should be added to make $x^4 + 64$ a perfect square (1) $4x^2$ (2) $16x^2$ (3) $8x^2$ (4) $-8x^2$ 33. Let $A = \{1,2,3,4\}$ and $B = \{4,8,9,10\}$. A function $f : A \rightarrow B$ given by $f = \{(1,4), (2,8), (3,9), (4,10)\}$ is a (1) Many-one function (2) Identity function						

www.kaluikual.com

M.PALANIAPPAN, SGHSS, Nerkuppai, SVG Dist. Mob: 9942904874

<u> </u>						
34. The value of $(1^3 + 2^3 + 3^3 + \dots + 15^3) - (1^3 + \dots + 15^3)$	+2+3++15) is					
(1) 14400 (2) 14200	(3) 14280	(4) 14520				
35. A tangent is perpendicular to the radius at t	he					
(1) centre (2) point of contact	t (3) infinity	(4) chord				
36. If $f(x) = \frac{1}{x}$ and $g(x) = \frac{1}{x^3}$, then $f \circ g \circ f$	(<i>y</i>) is					
(1) $\frac{1}{y^8}$ (2) $\frac{1}{y^6}$ (3) $\frac{1}{y}$	$\frac{1}{4}$ (4) $\frac{1}{y^3}$					
37. If <i>A</i> is a 2 × 3 matrix and <i>B</i> is a 3 × 4 matrix, how many columns does <i>AB</i> have						
(1) 3 (2) 4 (3) 2	(4) 5					
38. How many tangents can be drawn to the circle from an exterior point?						
(1) one (2) two (3) infinite (4) zero						
39. If $f : A \rightarrow B$ is a bijective function and if n	(B) = 7, then $n(A)$ is equ	al to				
(1) 7 $(2) 49$ $(3) 1$	$1 \qquad (4) 14$					
40. If $A = 2^{00}$ and $B = 2^{04} + 2^{03} + 2^{02} + 2^{04}$	$\dots + 2^{\circ}$ which of the foll	owing is true?				
(1) B is 2^{64} more than A (2) A and B are equal (2) B is larger than A by 1 (4) A is larger than B by 1						
(3) B is larger than A by 1 (4) A is larger than B by 1 41. Which of the following are linear equation in three variables						
(<i>i</i>) $2x = z$ (<i>ii</i>) $2sinx + ycosy + ztanz = 2$	(iii) $x + 2y^2 + z = 3$	(iv) $x - y - z = 7$				
(1) (i) and (iii) only (2) (i) and (iv) on	ly (3) (iv) only	(4) All				
42. The two tangents from an external points <i>P</i> to a circle with centre at <i>O</i> are <i>PA</i> and <i>PB</i> .						
If $\angle APB = 70^{\circ}$ then the value of $\angle AOB$ is						
(1) 100° (2) 110°	(3) 120° (4) 130°				
43. Let f and g be two functions given by						
$f = \{(0, 1), (2, 0), (3, -4), (4, 2), (5, 7)\}$						
$g = \{(0,2), (1,0), (2,4), (-4,2), (7,0)\}$	then the range of $f \circ g$ is					
$(1) \{0, 2, 3, 4, 5\} (2) \{-4, 1, 0, 2, 7\}$	(3) {1, 2, 3, 4, 5}	(4) {0, 1, 2}				
44. The next term of the sequence $\frac{3}{16}, \frac{1}{8}, \frac{1}{12}, \frac{1}{18}, \dots$ is						
$(1) \frac{1}{24}$ $(2) \frac{1}{27}$	$(3)\frac{2}{2}$	$(4) \frac{1}{24}$				
24 27 45 $y^2 \pm \frac{1}{2}$ is not equal to	3	81				
$\frac{1}{y^2}$	2	2				
(1) $\frac{y^{2}+1}{y^{2}}$ (2) $\left[y+\frac{1}{y}\right]^{2}$	(3) $\left[y - \frac{1}{y}\right]^2 + 2$	(4) $\left[y + \frac{1}{y}\right]^2 - 2$				
46. The s.quare root of $\frac{256 x^8 y^4 z^{10}}{x^8 x^6 z^{10}}$ is equal to						
$-25x^{6}y^{6}z^{6}$	16 L v L	$16 rz^2 $				
(1) $\frac{10}{5} \left \frac{x^2}{y^2} \right $ (2) $\frac{10}{5} \left \frac{y}{x^2 z^4} \right $	(3) $\frac{16}{5} \left \frac{y}{xz^2} \right $	$(4) \frac{16}{5} \left \frac{xz}{y} \right $				
47. The Pythagorean triplet constructed by using the consecutive odd numbers 3 and 5 is						
(1) (8, 15, 17) (2) (3, 4, 5)	(3) (5,12,13)	(4) (9,12,15)				
48. Let $f(x) = \sqrt{1 + x^2}$ then						
(1) $f(xy) = f(x).f(y)$ (2) $f(xy) \ge f(x).f(y)$						
(3) $f(xy) \le f(x)$. $f(y)$ (4) None of these						
49. It is unless of 6^{th} term of an A.P. is equal to $A P$ is (1) 0	$7 \text{ unles the } 7^{\text{m}} \text{ term, then}$	$1 \text{ une } 13^{\text{cm}} \text{ term OI the}$				
A.F. IS (1) 0 (2) 0	(3) /	(4) 13				

M.PALANIAPPAN, SGHSS, Nerkuppai, SVG Dist. Mob: 9942904874

50. For the given matrix $A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 2 & 4 & 6 & 8 \\ 9 & 11 & 13 & 15 \end{bmatrix}$ the order of the matrix A^T is						
(1) 2×3 (2) 3×2 (3) 3×4 (4) 4×3						
51. The first term of an A.P. whose 8 th and 12 th terms are 39 and 59 respectively is						
(1) 5 (2) 6 (3) 4 (4) 3						
52. If $(x - 6)$ is the HCF of $x^2 - 2x - 24$ and $x^2 - kx - 6$ then the value of k is						
(1) 3 (2) 5 (3) 6 (4) 8						
53. $\frac{3y-3}{y} \div \frac{7y-7}{3y^2}$ is (1) $\frac{9y}{7}$ (2) $\frac{9y^3}{(21y-21)}$ (3) $\frac{21y^2-42y+21}{3y^3}$ (4) $\frac{7(y^2-2y+1)}{y^2}$						
54. If $g = \{(1,1), (2,3), (3,5), (4,7)\}$ is a function given by $g(x) = \alpha x + \beta$ then the values						
of α and β are (1) (-1, 2) (2) (2, -1) (3) (-1, -2) (4) (1, 2)						
55. An A.P. consists of 31 terms. If its 16^{th} term is <i>m</i> , then the sum of all the terms of this A.P.						
is (1) 16 m (2) 62 m (3) 31 m (4) $\frac{31}{2}$ m						
56. If α and β are the roots of $ax^2 + bx + c = 0$, then one of the quadratic equations whose						
roots are $\frac{1}{a}$ and $\frac{1}{b}$ is (1) $ax^2 + bx + c = 0$ (2) $bx^2 + ax + c = 0$						
(3) $cx^2 + bx + a = 0$ (4) $cx^2 + ax + b = 0$						
57. The first term of an arithmetic progression is unity and the common difference is 4.						
Which of the following will be a term of this A.P.						
(1) 4551(2) 10091(3) 7881(4) 13531						
58. A system of three linear equations in three variables is inconsistent if their planes						
(1) intersect only at a point (2) intersect in a line						
(3) coincides with each other (4) do not intersect $(1 \ 2) \ (5 \ 7)$						
59. Find the matrix X if $2X + \begin{pmatrix} 1 & 3 \\ 5 & 7 \end{pmatrix} = \begin{pmatrix} 5 & 7 \\ 9 & 5 \end{pmatrix}$						
(1) $\begin{pmatrix} -2 & -2 \\ 2 & 2 \end{pmatrix}$ (2) $\begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}$ (3) $\begin{pmatrix} 1 & 2 \\ 2 & 2 \end{pmatrix}$ (4) $\begin{pmatrix} 2 & 1 \\ 2 & 1 \end{pmatrix}$						
(1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2						
is another tangent touching the circle at R. If $CP = 11$ cm and						
BC = 7 cm, then the length of BR is						
(1) 6 cm (2) 5 cm (3) 8 cm (4) 4 cm B^{B}						
II. Answer ALL the questions: $(5 \times 8 = 40)$						
61. Construct a triangle similar to a given triangle <i>LMN</i> with its sides equal to $\frac{4}{5}$ of the						
corresponding sides of the triangle LMN (scale factor $\frac{4}{r}$)						
62. Draw a triangle <i>ABC</i> of base $BC = 5.6$ cm, $\angle A = 40^{\circ}$ and the bisector of $\angle A$ meets <i>BC</i> at <i>D</i> such that $CD = 4$ cm.						
63. Draw a circle of radius 4.5 cm. Take a point on the circle. Draw the tangent at that point						
using the alternate – segment theorem. 64. Graph the quadratic equation for $x^2 - 4x + 4 = 0$ and state its nature of solution						
65. Draw the graph of $y = x^2 - 4$ and hence solve $x^2 - x - 12 = 0$.						
All the Best!						

www.kolvikuol.com