10 - Mathematics Special Test-2

Time: 3.00 Hrs$] \quad$ Geometry, Graph, One mark (Unit - 5,6,7,8)
[Marks:100
I. Choose the most suitable answer. Answer all the 60 questions: $(60 \times 1=60)$

1. If The area of triangle formed by the points $(-5,0),(0,-5)$ and $(5,0)$ is
(1) 0 sq.units
(2) 25 sq.units
(3) 5 sq.units
(4) none of these
2. The value of $\sin ^{2} \theta+\frac{1}{1+\tan ^{2} \theta} \quad$ is equal to
(1) $\tan ^{2} \theta$
(2) 1
(3) $\cot ^{2} \theta$
(4) 0
3. The total surface area of a cylinder whose radius is $\frac{1}{3}$ of its height is
(1) $\frac{9 \pi h^{2}}{8}$ sq. units
(2) $24 \pi h^{2}$ sq. units
(3) $\frac{8 \pi h^{2}}{9}$ sq. units
(4) $\frac{56 \pi h^{2}}{9}$ sq. units
4. Variance of first 20 natural numbers is
(1) 32.25
(2) 44.25
(3) 33.25
(4) 30
5. A man walks near a wall, such that the distance between him and the wall is 10 units. Consider the wall to be the Y axis. The path travelled by the man is
(1) $x=10$
(2) $y=10$
(3) $x=0$
(4) $y=0$
6. $9 \tan ^{2} \theta-9 \sec ^{2} \theta=$
(1) 1
(2) 0
(3) 9
(4) -9
7. The total surface area of a hemi-sphere is how much times the square of its radius.
(1) π
(2) 4π
(3) 3π
(4) 2π
8. The mean of 100 observations is 40 and their standard deviation is 3 . The sum of squares of all deviations is
(1) 40000
(2) 160900
(3) 160000
(4) 30000
9. The straight line given by the equation $x=11$ is
(1) parallel to X axis
(2) parallel to Y axis
(3) passing through the origin
(4) passing through the point $(0,11)$
10. If $\sin \theta+\cos \theta=a$ and $\sec \theta+\operatorname{cosec} \theta=b$, then the value of $b\left(a^{2}-1\right)$ is equal to
(1) $2 a$
(2) $3 a$
(3) 0
(4) $2 a b$
11. A spherical ball of radius r_{1} units is melted to make 8 new identical balls each of radius
r_{2} units. Then $r_{1}: r_{2}$ is
(1) $2: 1$
(2) $1: 2$
(3) $4: 1$
(4) $1: 4$
12. The height and radius of the cone of which the frustum is a part are h_{1} units and r_{1} units respectively. Height of the frustum is h_{2} units and radius of the smaller base is r_{2} units. If $h_{2}: h_{1}=1: 2$ then $r_{2}: r_{1}$ is
(1) $1: 3$
(2) $1: 2$
(3) $2: 1$
(4) $3: 1$
13. A page is selected at random from a book. The probability that the digit at units place of
the page number chosen is less than 7 is
(1) $\frac{3}{10}$
(2) $\frac{7}{10}$
(3) $\frac{3}{9}$
(4) $\frac{7}{9}$
14. If the points $(0,0),(a, 0)$ and $(0, b)$ are collinear then
(1) $a=b$
(2) $a+b=0$
(3) $a b=0$
(4) $a \neq b$
15. If the ratio of the height of a tower and the length of its shadow is $\sqrt{3}: 1$, then the angle of elevation of the sun has measure
(1) 45°
(2) 30°
(3) 90°
(4) 60°
16. A shuttle cock used for playing badminton has the shape of the combination of
(1) a cylinder and a sphere
(2) a hemisphere and a cone
(3) a sphere and a cone
(4) frustum of a cone and a hemisphere
17. If p is the probability of an event A, then p satisfies
(1) $0<p<1$
(2) $0 \leq p \leq 1$
(3) $0 \leq p<1$
(4) $0<p \leq 1$
18. The point of intersection of $3 x-y=4$ and $x+y=8$ is
(1) $(5,3)$
(2) $(2,4)$
$(3)(3,5)$
(4) $(4,4)$
19. If $\sin \theta=\cos \theta$, then $2 \tan ^{2} \theta+\sin \theta-1$ is equal to
(1) $\frac{-3}{2}$
(2) $\frac{3}{2}$
(3) $\frac{2}{3}$
(4) $\frac{-2}{3}$
20. The height of a right circular cone whose radius is 5 cm and slant height is 13 cm will be
(1) 12 cm
(2) 10 cm
(3) 13 cm
(4) 5 cm
21. A purse contains 10 notes of Rs.2000, 15 notes of Rs.500, and 25 notes of Rs.200. One note is drawn at random. What is the probability that the note is either a Rs. 500
note or Rs. 200 note?
(1) $\frac{1}{5}$
(2) $\frac{3}{10}$
(3) $\frac{2}{3}$
(4) $\frac{4}{5}$
22. $a \cot \theta+b \operatorname{cosec} \theta=p$ and $b \cot \theta+a \operatorname{cosec} \theta=q$ then $p^{2}-q^{2}$ is equal to
(1) $a^{2}-b^{2}$
(2) $b^{2}-a^{2}$
(3) $a^{2}+b^{2}$
(4) $b-a$
23. The slope of the line joining $(12,3),(4, a)$ is $\frac{1}{8}$. The value of ' a ' is
(1) 1
(2) 4
(3) -5
(4) 2
24. A tower is 60 m high. Its shadow is x metres shorter when the sun's altitude is 45° than when it has been 30°, then x is equal to
(1) 41.92 m
(2) 43.92 m
(3) 43 m
(4) 45.6 m
25. The ratio of the volumes of a cylinder, a cone and a sphere, if each has the same
diameter and same height is
(1) $1: 2: 3$
(2) $2: 1: 3$
(3) $1: 3: 2$
(4) $3: 1: 2$
26. If the mean and coefficient of variation of a data are 4 and 87.5% then the standard
deviation is
(1) 3.5
(2) 3
(3) 4.5
(4) 2.5
27. The equation of a straight line having slope 3 and y-intercept -4 is
(1) $3 x-y-4=0$
(2) $3 x+y-4=0$
(3) $3 x-y+4=0$
(4) $3 x+y+4=0$
28. A frustum of a right circular cone is of height 16 cm with radii of its ends as 8 cm and 20 cm . Then, the volume of the frustum is
(1) $3328 \mathrm{~cm}^{3}$
(2) $3228 \pi \mathrm{~cm}^{3}$
(3) $3240 \pi \mathrm{~cm}^{3}$
(4) $3340 \pi \mathrm{~cm}^{3}$
29. The probability of getting a job for a person is $\frac{x}{3}$. If the probability of not getting the job
is $\frac{2}{3}$ then the value of x is
(1) 2
(2) 1
(3) 3
(4) 1.5
30. If $(\sin \alpha+\operatorname{cosec} \alpha)^{2}+(\cos \alpha+\sec \alpha)^{2}=k+\tan ^{2} \alpha+\cot ^{2} \alpha$, then the value of k is equal to
(1) 9
(2) 7
(3) 5
(4) 3
31. The volume (in cm^{3}) of the greatest sphere that can be cut off from a cylindrical log of wood of base radius 1 cm and height 5 cm is
(1) $\frac{4}{3} \pi$
(2) $\frac{10}{3} \pi$
(3) 5π
(4) $\frac{20}{3} \pi$
32. If the standard deviation of x, y, z is p then the standard deviation of $3 x+5,3 y+5$,
$3 z+5$ is
(1) $3 p+5$
(2) $3 p$
(3) $p+5$
(4) $9 p+15$
33. If slope of the line $P Q$ is $\frac{1}{\sqrt{3}}$ then the slope of the perpendicular bisector of $P Q$ is
(1) $\sqrt{3}$
(2) $-\sqrt{3}$
(3) $\frac{1}{\sqrt{3}}$
(4) 0
34. The angle of elevation of a cloud from a point h metres above a lake is β. The angle of depression of its reflection in the lake is 45°. The height of location of the cloud from
the lake is
(1) $\frac{h(1+\tan \beta)}{1-\tan \beta}$
(2) $\frac{h(1-\tan \beta)}{1+\tan \beta}$
(3) $h \tan \left(45^{\circ}-\beta\right)$
(4) none of these
35. The curved surface area of a cylinder is $264 \mathrm{~m}^{2}$ and its volume is $924 \mathrm{~m}^{2}$. The ratio of diameter to its height is
(1) $3: 7$
(2) $7: 3$
(3) $6: 7$
(4) 7:6
36. If A is a point on the Y axis whose ordinate is 8 and B is a point on the X axis whose abscissae is 5 then the equation of the line $A B$ is
(1) $8 x+5 y=40$
(2) $8 x-5 y=40$
(3) $x=8$
(4) $y=5$
37. If $5 x=\sec \theta$ and $\frac{5}{x}=\tan \theta$, then $x^{2}-\frac{1}{x^{2}}$ is equal to
(1) 25
(2) $\frac{1}{25}$
(3) 5
(4) 1
38. If the radius of the base of a right circular cylinder is halved keeping the same height, then the ratio of the volume of the cylinder thus obtained to the volume of original
cylinder is
(1) $1: 2$
(2) $1: 4$
(3) $1: 6$
(4) $1: 8$
39. If a letter is chosen at random from the English alphabets $\{a, b, \ldots, z\}$, then the probability that the letter chosen precedes x
(1) $\frac{12}{13}$
(2) $\frac{1}{13}$
(3) $\frac{23}{26}$
(4) $\frac{3}{26}$
40. The equation of a line passing through the origin and perpendicular to the line $7 x-3 y+4=0$ is
(1) $7 x-3 y+4=0$
(2) $3 x-7 y+4=0$
(3) $3 x+7 y=0$
(4) $7 x-3 y=0$
41. The electric pole subtends an angle of 30° at a point on the same level as its foot. At a second point ' b ' metres above the first, the depression of the foot of the pole is 60°. The height of the pole (in metres) is equal to
(1) $\sqrt{3} b$
(2) $\frac{b}{3}$
(3) $\frac{b}{2}$
(4) $\frac{b}{\sqrt{3}}$
42. Curved surface area of solid sphere is $24 \mathrm{~cm}^{2}$. If the sphere is divided into two hemispheres, then the total surface area of one of the hemispheres is
(1) $12 \mathrm{~cm}^{2}$
(2) $8 \mathrm{~cm}^{2}$
(3) $16 \mathrm{~cm}^{2}$
(4) $18 \mathrm{~cm}^{2}$
43. Kamalam went to play a lucky draw contest. 135 tickets of the lucky draw were sold. If the probability of Kamalam winning is $\frac{1}{9}$, then the number of tickets bought by
Kamalam is
(1) 5
(2) 10
(3) 15
(4) 20
44. Consider four straight lines
(i) $l_{1}: 3 y=4 x+5$
(ii) $l_{2}: 4 y=3 x-1$
(iii) $l_{3}: 4 y+3 x=7$
(iv) $l_{4}: 4 x+3 y=2$

Which of the following statement is true ?
(1) l_{1} and l_{2} are perpendicular
(2) l_{1} and l_{4} are parallel
(3) l_{2} and l_{4} are perpendicular
(4) l_{2} and l_{3} are parallel
45. A ladder of length 14 m just reaches the top of a wall. If the ladder makes an angle of 60° with the horizontal, then the height of the wall is
(1) $14 \sqrt{3} \mathrm{~m}$
(2) $28 \sqrt{3} \mathrm{~m}$
(3) $7 \sqrt{3} \mathrm{~m}$
(4) $35 \sqrt{3} \mathrm{~m}$
46. $(1+\tan \theta+\sec \theta)(1+\cot \theta-\operatorname{cosec} \theta)$ is equal to
(1) 0
(2) 1
(3) 2
(4) -1
47. The curved surface area of a right circular cone of height 15 cm and base diameter 16 cm
is
(1) $60 \pi \mathrm{~cm}^{2}$
(2) $68 \pi \mathrm{~cm}^{2}$
(3) $120 \pi \mathrm{~cm}^{2}$
(4) $136 \pi \mathrm{~cm}^{2}$
48. The probability of a red marble selected at random from a jar containing p red, q blue
and r green marbles is
(1) $\frac{q}{p+q+r}$
(2) $\frac{p}{p+q+r}$
(3) $\frac{p+q}{p+q+r}$
(4) $\frac{p+r}{p+q+r}$
49. A straight line has equation $8 y=4 x+21$. Which of the following is true
(1) The slope is 0.5 and the y intercept is 2.6
(2) The slope is 5 and the y intercept is 1.6
(3) The slope is 0.5 and the y intercept is 1.6
(4) The slope is 5 and the y intercept is 2.6
50. The angle of depression of the top and bottom of 20 m tall building from the top of a multistoried building are 30° and 60° respectively. The height of the multistoried building and the distance between two buildings (in metres) is
(1) $20,10 \sqrt{3}$
(2) $30,5 \sqrt{3}$
(3) 20,10
(4) $30,10 \sqrt{3}$
51. If the radius of the base of a cone is tripled and the height is doubled then the volume is
(1) made 6 times
(2) made 18 times
(3) made 12 times
(4) unchanged
52. Find the value of p, given that the line $\frac{y}{2}=x-p$ passess through the point $(-4,4)$ is
(1) -4
(2) -6
(3) 0
(4) 8
53. When proving that a quadrilateral is a trapezium, it is necessary to show
(1) Two sides are parallel.
(2) Two parallel and two non-parallel sides.
(3) Opposite sides are parallel.
(4) All sides are of equal length.
54. If $x=\operatorname{atan} \theta$ and $y=b \sec \theta$ then
(1) $\frac{y^{2}}{b^{2}}-\frac{x^{2}}{a^{2}}=1$
(2) $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
(3) $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
(4) $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=0$
55. The range of the data $8,8,8,8,8 \ldots 8$ is
(1) 0
(2) 1
(3) 8
(4) 3
56. If t is the standard deviation of x, y, z, then the standard deviation of $x+5, y+5, z+5$ is
(1) $\frac{t}{3}$
(2) $t+5$
(3) t
(4) $x y z$
57. $(2,1)$ is the point of intersection of two lines.
(1) $x-y-3=0 ; 3 x-y-7=0$
(2) $x+y=3 ; 3 x+y=7$
(3) $3 x+y=3 ; x+y=7$
(4) $x+3 y-3=0 ; x-y-7=0$
58. The standard deviation of a data is 3 . If each value is multiplied by 5 then the new
variance is
(1) 3
(2) 15
(3) 5
(4) 225
59. If two solid hemispheres of same base radius r units are joined together along their bases, then curved surface area of this new solid is
(1) $4 \pi r^{2}$ sq.units
(2) $6 \pi r^{2}$ sq.units
(3) $3 \pi r^{2}$ sq.units
(4) $8 \pi r^{2}$ sq.units
60. If the standard deviation of a variable x is 4 and if $y=\frac{3 x+5}{4}$, then the standard
deviation of y is
(1) 4
(2) 3.5
(3) 3
(4) 2.5

II. Answer ALL the questions: ($5 \times 8=40$)

61. Construct a triangle similar to a given triangle $A B C$ with its sides equal to $\frac{6}{5}$ of the corresponding sides of the triangle $A B C$ (scale factor $\frac{6}{5}$)
62. Construct a $\triangle P Q R$ in which the base $P Q=4.5 \mathrm{~cm}, \angle R=35^{\circ}$ and the median from R to $P Q$ is 6 cm .
63. Draw a tangent to the circle from the point P having radius 3.6 cm , and centre at O point P is at a distance 7.2 cm from the centre.
64. Graph the equation $x^{2}-9 x+20=0$ and state its nature of solution.
65. Draw the graph of $y=x^{2}-5 x-6$ and hence solve $x^{2}-5 x-14=0$.

All the Best!

