10 - <u>Mathematics</u> <u>Special Test - 2</u>

Tir	me: 3.00 Hrs] Geometry, Graph, One marl	k (Unit – 5,6,7,8)	[Marks:100
I. 1.	Choose the most suitable answer. Answer If The area of triangle formed by the points (-5, 0	all the 60 ques (0, -5) and $(5, 0)$	tions: $(60 \times 1 = 60)$ is
2	(1) 0 sq.units (2) 25 sq.units (3)	3) 5 sq.units	(4) none of these
2.	The value of $sin^2\theta + \frac{1}{1+tan^2\theta}$ is equal to	2 x^2	(4) 0
n	(1) $tan^2\theta$ (2) 1 (4)	$\frac{3}{1} \int \frac{1}{2} dt = \frac{1}{2} \int \frac{1}{2} \int \frac{1}{2} dt = \frac{1}{2} \int $	(4) U
3.	The total surface area of a cylinder whose radius	1S = 0I its neight i	IS
	(1) $\frac{9\pi h^2}{8}$ sq. units (2) $24\pi h^2$ sq. units (3)	3) $\frac{8\pi n^2}{9}$ sq. units	(4) $\frac{56\pi h^2}{9}$ sq. units
4.	Variance of first 20 natural numbers is		
_	(1) 32.25 (2) 44.25 (3)	3) 33.25	(4) 30
5.	A man walks near a wall, such that the distance	between him and the	he wall is 10 units.
	(1) $x = 10$ (2) $y = 10$	(3) $x = 0$	(4) $y = 0$
6.	$9tan^2\theta - 9sec^2\theta = (1) 1 (2) 0$	(3) 9	(4) -9
7.	The total surface area of a hemi-sphere is how m	uch times the squa	re of its radius.
	(1) π (2) 4π	(3) 3π	(4) 2π
8.	The mean of 100 observations is 40 and their	standard deviation	n is 3. The sum of
	squares of all deviations is		(4) 20000
0	(1) 40000 (2) 160900	(3) 160000	(4) 30000
9.	(1) parallel to X axis (2) par	callel to V axis	
	(3) passing through the origin (4) pas	ssing through the p	oint (0, 11)
10.	If $sin\theta + cos\theta = a$ and $sec\theta + cosec\theta = b$, then the	he value of $b(a^2 - 1)$	l) is equal to
	(1) 2 <i>a</i> (2) 3 <i>a</i>	(3) 0	(4) 2 <i>ab</i>
11.	. A spherical ball of radius r_1 units is melted to matrix	ake 8 new identical	balls each of radius
10	r_2 units. Then $r_1: r_2$ is (1) 2 : 1 (2) 1	: 2 (3) 4	: 1 (4) 1 : 4
12.	. The height and radius of the cone of which the fr	ustum is a part are	h_1 units and r_1
	r_{2} units respectively. Height of the flustum is n_{2} units. If h_{2} : $h_{2} = 1 \cdot 2$ then r_{2} : r_{2} is	fints and facility of t	the smaller base is
	(1) 1 : 3 (2) 1 : 2 (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	(3) 2 : 1	(4) 3 : 1
13.	A page is selected at random from a book. The pr	robability that the c	ligit at units place of
	the page number chosen is less than 7 is (1)	$\frac{3}{10}$ (2) $\frac{7}{10}$	$(3)\frac{3}{2}$ (4) $\frac{7}{2}$
14.	If the points $(0,0)$, $(a,0)$ and $(0,b)$ are collinear th	ien	9 9
	(1) $a = b$ (2) $a + b = 0$ (3) $ab = 0$	$(4) a \neq 1$	b
15.	. If the ratio of the height of a tower and the leng	gth of its shadow i	s $\sqrt{3}$: 1, then the
	angle of elevation of the sun has measure		
	(1) 45° (2) 30° (3)	3) 90°	(4) 60°
16.	A shuttle cock used for playing badminton has th	he shape of the com	ibination of
	(1) a cylinder and a sphere (2) (3) a sphere and a cone (4)	frustum of a cone	a colle
	(0) a sphere and a cone (7)	in astain of a colle of	and a nonnopilere

M.PALANIAPPAN, SGHSS, Nerkuppai, SVG Dist. 9942904874

-	I I • 1		
	70 371	7110	0000

17.	If p is the probability of an event A , then p satisfies
	(1) $0 (2) 0 \le p \le 1 (3) 0 \le p < 1 (4) 0$
18.	The point of intersection of $3x - y = 4$ and $x + y = 8$ is (1) (5, 2) (2, 4) (4, 4)
19	(1) (5, 3) (2) (2, 4) (3) (3, 5) (4) (4, 4) If $\sin\theta = \cos\theta$ then $2\tan^2\theta \pm \sin\theta = 1$ is equal to
19.	(1) $\frac{-3}{2}$ (2) $\frac{3}{2}$ (3) $\frac{2}{2}$ (4) $\frac{-2}{2}$
20	(1) $\frac{1}{2}$ (2) $\frac{1}{2}$ (3) $\frac{1}{3}$ (7) $\frac{1}{3}$ The height of a right circular cone where radius is 5 cm and cleant height is 12 cm will be
20.	(1) 12 cm (2) 10 cm (3) 13 cm (4) 5 cm
21.	A purse contains 10 notes of Rs.2000, 15 notes of Rs.500, and 25 notes of Rs.200.
	One note is drawn at random. What is the probability that the note is either a Rs.500
	note or Rs.200 note? (1) $\frac{1}{5}$ (2) $\frac{3}{10}$ (3) $\frac{2}{3}$ (4) $\frac{4}{5}$
22.	$a \cot \theta + b \csc \theta = p$ and $b \cot \theta + a \csc \theta = q$ then $p^2 - q^2$ is equal to
	(1) $a^2 - b^2$ (2) $b^2 - a^2$ (3) $a^2 + b^2$ (4) $b - a$
23.	The slope of the line joining (12, 3), (4, a) is $\frac{1}{8}$. The value of 'a' is
	(1) 1 (2) 4 (3) -5 (4) 2
24.	A tower is 60 m high. Its shadow is x metres shorter when the sun's altitude is 45°
	than when it has been 30°, then x is equal to (1) 41.92 m (2) 43.92 m (3) 43 m (4) 45.6 m
25.	The ratio of the volumes of a cylinder, a cone and a sphere, if each has the same
	diameter and same height is (1) 1:2:3 (2) 2:1:3 (3) 1:3:2 (4) 3:1:2
26.	If the mean and coefficient of variation of a data are 4 and 87.5% then the standard
~ -	deviation is (1) 3.5 (2) 3 (3) 4.5 (4) 2.5
	The equation of a straight line having slone X and y_{-} intercent $-A$ is
27.	(1) $2r - y - 4 = 0$ (2) $2r + y - 4 = 0$ (3) $2r - y + 4 = 0$ (4) $2r + y + 4 = 0$
27.	(1) $3x - y - 4 = 0$ (2) $3x + y - 4 = 0$ (3) $3x - y + 4 = 0$ (4) $3x + y + 4 = 0$ A frustum of a right circular cone is of height 16 <i>cm</i> with radii of its ends as 8 <i>cm</i> and
28.	(1) $3x - y - 4 = 0$ (2) $3x + y - 4 = 0$ (3) $3x - y + 4 = 0$ (4) $3x + y + 4 = 0$ A frustum of a right circular cone is of height 16 <i>cm</i> with radii of its ends as 8 <i>cm</i> and 20 <i>cm</i> . Then, the volume of the frustum is
28.	(1) $3x - y - 4 = 0$ (2) $3x + y - 4 = 0$ (3) $3x - y + 4 = 0$ (4) $3x + y + 4 = 0$ A frustum of a right circular cone is of height 16 <i>cm</i> with radii of its ends as 8 <i>cm</i> and 20 <i>cm</i> . Then, the volume of the frustum is (1) $3328 \pi cm^3$ (2) $3228 \pi cm^3$ (3) $3240 \pi cm^3$ (4) $3340 \pi cm^3$
27. 28. 29.	(1) $3x - y - 4 = 0$ (2) $3x + y - 4 = 0$ (3) $3x - y + 4 = 0$ (4) $3x + y + 4 = 0$ A frustum of a right circular cone is of height 16 <i>cm</i> with radii of its ends as 8 <i>cm</i> and 20 <i>cm</i> . Then, the volume of the frustum is (1) $3328 \pi cm^3$ (2) $3228 \pi cm^3$ (3) $3240 \pi cm^3$ (4) $3340 \pi cm^3$ The probability of getting a job for a person is $\frac{x}{3}$. If the probability of not getting the job
27. 28. 29.	(1) $3x - y - 4 = 0$ (2) $3x + y - 4 = 0$ (3) $3x - y + 4 = 0$ (4) $3x + y + 4 = 0$ A frustum of a right circular cone is of height 16 <i>cm</i> with radii of its ends as 8 <i>cm</i> and 20 <i>cm</i> . Then, the volume of the frustum is (1) $3328 \pi cm^3$ (2) $3228 \pi cm^3$ (3) $3240 \pi cm^3$ (4) $3340 \pi cm^3$ The probability of getting a job for a person is $\frac{x}{3}$. If the probability of not getting the job is $\frac{2}{3}$ then the value of x is (1) 2 (2) 1 (3) 3 (4) 1.5
27.28.29.30.	(1) $3x - y - 4 = 0$ (2) $3x + y - 4 = 0$ (3) $3x - y + 4 = 0$ (4) $3x + y + 4 = 0$ A frustum of a right circular cone is of height 16 <i>cm</i> with radii of its ends as 8 <i>cm</i> and 20 <i>cm</i> . Then, the volume of the frustum is (1) $3328 \pi cm^3$ (2) $3228 \pi cm^3$ (3) $3240 \pi cm^3$ (4) $3340 \pi cm^3$ The probability of getting a job for a person is $\frac{x}{3}$. If the probability of not getting the job is $\frac{2}{3}$ then the value of x is (1) 2 (2) 1 (3) 3 (4) 1.5 If $(sin\alpha + cosec\alpha)^2 + (cos\alpha + sec\alpha)^2 = k + tan^2\alpha + cot^2\alpha$, then the value of k is equal to
27. 28. 29. 30.	The equation of a straight line having slope 5° and y-intercept -4 is (1) $3x - y - 4 = 0$ (2) $3x + y - 4 = 0$ (3) $3x - y + 4 = 0$ (4) $3x + y + 4 = 0$ A frustum of a right circular cone is of height 16 <i>cm</i> with radii of its ends as 8 <i>cm</i> and 20 <i>cm</i> . Then, the volume of the frustum is (1) $3328 \pi cm^3$ (2) $3228 \pi cm^3$ (3) $3240 \pi cm^3$ (4) $3340 \pi cm^3$ The probability of getting a job for a person is $\frac{x}{3}$. If the probability of not getting the job is $\frac{2}{3}$ then the value of x is (1) 2 (2) 1 (3) 3 (4) 1.5 If $(sin\alpha + cosec\alpha)^2 + (cos\alpha + sec\alpha)^2 = k + tan^2\alpha + cot^2\alpha$, then the value of k is equal to (1) 9 (2) 7 (3) 5 (4) 3
 27. 28. 29. 30. 31. 	(1) $3x - y - 4 = 0$ (2) $3x + y - 4 = 0$ (3) $3x - y + 4 = 0$ (4) $3x + y + 4 = 0$ A frustum of a right circular cone is of height 16 <i>cm</i> with radii of its ends as 8 <i>cm</i> and 20 <i>cm</i> . Then, the volume of the frustum is (1) $3328 \pi cm^3$ (2) $3228 \pi cm^3$ (3) $3240 \pi cm^3$ (4) $3340 \pi cm^3$ The probability of getting a job for a person is $\frac{x}{3}$. If the probability of not getting the job is $\frac{2}{3}$ then the value of x is (1) 2 (2) 1 (3) 3 (4) 1.5 If $(sin\alpha + cosec\alpha)^2 + (cos\alpha + sec\alpha)^2 = k + tan^2\alpha + cot^2\alpha$, then the value of k is equal to (1) 9 (2) 7 (3) 5 (4) 3 The volume (in <i>cm</i> ³) of the greatest sphere that can be cut off from a cylindrical log of where the value of x is (1) x (2) x (2) x (3) x (4) x (4
 28. 29. 30. 31. 	The equation of a straight line having slope 5 and y-intercept -4 is (1) $3x - y - 4 = 0$ (2) $3x + y - 4 = 0$ (3) $3x - y + 4 = 0$ (4) $3x + y + 4 = 0$ A frustum of a right circular cone is of height 16 <i>cm</i> with radii of its ends as 8 <i>cm</i> and 20 <i>cm</i> . Then, the volume of the frustum is (1) $3328 \pi cm^3$ (2) $3228 \pi cm^3$ (3) $3240 \pi cm^3$ (4) $3340 \pi cm^3$ The probability of getting a job for a person is $\frac{x}{3}$. If the probability of not getting the job is $\frac{2}{3}$ then the value of x is (1) 2 (2) 1 (3) 3 (4) 1.5 If $(sin\alpha + cosec\alpha)^2 + (cos\alpha + sec\alpha)^2 = k + tan^2\alpha + cot^2\alpha$, then the value of k is equal to (1) 9 (2) 7 (3) 5 (4) 3 The volume (in <i>cm</i> ³) of the greatest sphere that can be cut off from a cylindrical log of wood of base radius 1 <i>cm</i> and height 5 <i>cm</i> is (1) $\frac{4}{3} = \frac{(2)}{3} \frac{10}{3} = \frac{(2)}{3} \frac{10}{3} = \frac{(2)}{3} \frac{5}{3} = \frac{(4)}{3} \frac{20}{3} = \frac{(4)}{3} \frac{20}{3} = \frac{(4)}{3} \frac{10}{3} = \frac{(4)}{3} \frac{10}{3}$
 28. 29. 30. 31. 	The equation of a straight line having slope 5 and y-intercept -4 is (1) $3x - y - 4 = 0$ (2) $3x + y - 4 = 0$ (3) $3x - y + 4 = 0$ (4) $3x + y + 4 = 0$ A frustum of a right circular cone is of height 16 <i>cm</i> with radii of its ends as 8 <i>cm</i> and 20 <i>cm</i> . Then, the volume of the frustum is (1) $3328 \pi cm^3$ (2) $3228 \pi cm^3$ (3) $3240 \pi cm^3$ (4) $3340 \pi cm^3$ The probability of getting a job for a person is $\frac{x}{3}$. If the probability of not getting the job is $\frac{2}{3}$ then the value of x is (1) 2 (2) 1 (3) 3 (4) 1.5 If $(sin\alpha + cosec\alpha)^2 + (cos\alpha + sec\alpha)^2 = k + tan^2\alpha + cot^2\alpha$, then the value of k is equal to (1) 9 (2) 7 (3) 5 (4) 3 The volume (in <i>cm</i> ³) of the greatest sphere that can be cut off from a cylindrical log of wood of base radius 1 <i>cm</i> and height 5 <i>cm</i> is (1) $\frac{4}{3}\pi$ (2) $\frac{10}{3}\pi$ (3) 5π (4) $\frac{20}{3}\pi$
 28. 29. 30. 31. 32. 	The equation of a straight life having stope 3' and y-intercept -4 is (1) $3x - y - 4 = 0$ (2) $3x + y - 4 = 0$ (3) $3x - y + 4 = 0$ (4) $3x + y + 4 = 0$ A frustum of a right circular cone is of height 16 <i>cm</i> with radii of its ends as 8 <i>cm</i> and 20 <i>cm</i> . Then, the volume of the frustum is (1) $3328 \pi cm^3$ (2) $3228 \pi cm^3$ (3) $3240 \pi cm^3$ (4) $3340 \pi cm^3$ The probability of getting a job for a person is $\frac{x}{3}$. If the probability of not getting the job is $\frac{2}{3}$ then the value of x is (1) 2 (2) 1 (3) 3 (4) 1.5 If $(sin\alpha + cosec\alpha)^2 + (cos\alpha + sec\alpha)^2 = k + tan^2\alpha + cot^2\alpha$, then the value of k is equal to (1) 9 (2) 7 (3) 5 (4) 3 The volume (in <i>cm</i> ³) of the greatest sphere that can be cut off from a cylindrical log of wood of base radius 1 <i>cm</i> and height 5 <i>cm</i> is (1) $\frac{4}{3}\pi$ (2) $\frac{10}{3}\pi$ (3) 5π (4) $\frac{20}{3}\pi$ If the standard deviation of x, y, z is p then the standard deviation of $3x + 5$, $3y + 5$, 3z + 5 is (1) $3n + 5$ (2) $3n$
 28. 29. 30. 31. 32. 33 	The equation of a straight line having slope 5 and y-intercept -4 is (1) $3x - y - 4 = 0$ (2) $3x + y - 4 = 0$ (3) $3x - y + 4 = 0$ (4) $3x + y + 4 = 0$ A frustum of a right circular cone is of height 16 <i>cm</i> with radii of its ends as 8 <i>cm</i> and 20 <i>cm</i> . Then, the volume of the frustum is (1) $3328 \pi cm^3$ (2) $3228 \pi cm^3$ (3) $3240 \pi cm^3$ (4) $3340 \pi cm^3$ The probability of getting a job for a person is $\frac{x}{3}$. If the probability of not getting the job is $\frac{2}{3}$ then the value of x is (1) 2 (2) 1 (3) 3 (4) 1.5 If $(sin\alpha + cosec\alpha)^2 + (cos\alpha + sec\alpha)^2 = k + tan^2\alpha + cot^2\alpha$, then the value of k is equal to (1) 9 (2) 7 (3) 5 (4) 3 The volume (in <i>cm</i> ³) of the greatest sphere that can be cut off from a cylindrical log of wood of base radius 1 <i>cm</i> and height 5 <i>cm</i> is (1) $\frac{4}{3}\pi$ (2) $\frac{10}{3}\pi$ (3) 5π (4) $\frac{20}{3}\pi$ If the standard deviation of x, y, z is p then the standard deviation of $3x + 5$, $3y + 5$, 3z + 5 is (1) $3p + 5$ (2) $3p$ (3) $p + 5$ (4) $9p + 15If slope of the line P0 is \frac{1}{2} then the slope of the perpendicular bisector of P0 is$
 28. 29. 30. 31. 32. 33. 	The equation of a straight line having slope 5 and y-intercept -4 is (1) $3x - y - 4 = 0$ (2) $3x + y - 4 = 0$ (3) $3x - y + 4 = 0$ (4) $3x + y + 4 = 0$ A frustum of a right circular cone is of height 16 <i>cm</i> with radii of its ends as 8 <i>cm</i> and 20 <i>cm</i> . Then, the volume of the frustum is (1) $3328 \pi cm^3$ (2) $3228 \pi cm^3$ (3) $3240 \pi cm^3$ (4) $3340 \pi cm^3$ The probability of getting a job for a person is $\frac{x}{3}$. If the probability of not getting the job is $\frac{2}{3}$ then the value of x is (1) 2 (2) 1 (3) 3 (4) 1.5 If $(sin\alpha + cosec\alpha)^2 + (cos\alpha + sec\alpha)^2 = k + tan^2\alpha + cot^2\alpha$, then the value of k is equal to (1) 9 (2) 7 (3) 5 (4) 3 The volume (in <i>cm</i> ³) of the greatest sphere that can be cut off from a cylindrical log of wood of base radius 1 <i>cm</i> and height 5 <i>cm</i> is (1) $\frac{4}{3}\pi$ (2) $\frac{10}{3}\pi$ (3) 5π (4) $\frac{20}{3}\pi$ If the standard deviation of x, y, z is p then the standard deviation of $3x + 5$, $3y + 5$, 3z + 5 is (1) $3p + 5$ (2) $3p$ (3) $p + 5$ (4) $9p + 15If slope of the line PQ is \frac{1}{\sqrt{3}} then the slope of the perpendicular bisector of PQ is(1) \sqrt{2}$
 28. 29. 30. 31. 32. 33. 	The equation of a straight line having stope 5 and y-intercept -4 is (1) $3x - y - 4 = 0$ (2) $3x + y - 4 = 0$ (3) $3x - y + 4 = 0$ (4) $3x + y + 4 = 0$ A frustum of a right circular cone is of height 16 <i>cm</i> with radii of its ends as 8 <i>cm</i> and 20 <i>cm</i> . Then, the volume of the frustum is (1) $3328 \pi cm^3$ (2) $3228 \pi cm^3$ (3) $3240 \pi cm^3$ (4) $3340 \pi cm^3$ The probability of getting a job for a person is $\frac{x}{3}$. If the probability of not getting the job is $\frac{2}{3}$ then the value of x is (1) 2 (2) 1 (3) 3 (4) 1.5 If $(sin\alpha + coseca)^2 + (cos\alpha + seca)^2 = k + tan^2\alpha + cot^2\alpha$, then the value of k is equal to (1) 9 (2) 7 (3) 5 (4) 3 The volume (in <i>cm</i> ³) of the greatest sphere that can be cut off from a cylindrical log of wood of base radius 1 <i>cm</i> and height 5 <i>cm</i> is (1) $\frac{4}{3}\pi$ (2) $\frac{10}{3}\pi$ (3) 5π (4) $\frac{20}{3}\pi$ If the standard deviation of x, y, z is p then the standard deviation of $3x + 5$, $3y + 5$, 3z + 5 is (1) $3p + 5$ (2) $3p$ (3) $p + 5$ (4) $9p + 15If slope of the line PQ is \frac{1}{\sqrt{3}} then the slope of the perpendicular bisector of PQ is(1) \sqrt{3} (2) -\sqrt{3} (3) \frac{1}{\sqrt{3}} (4) 0$
 28. 29. 30. 31. 32. 33. 34. 	The equation of a straight line having slope 5 and y-intercept -4 is (1) $3x - y - 4 = 0$ (2) $3x + y - 4 = 0$ (3) $3x - y + 4 = 0$ (4) $3x + y + 4 = 0$ A frustum of a right circular cone is of height 16cm with radii of its ends as 8cm and 20cm. Then, the volume of the frustum is (1) $3328 \pi cm^3$ (2) $3228 \pi cm^3$ (3) $3240 \pi cm^3$ (4) $3340 \pi cm^3$ The probability of getting a job for a person is $\frac{x}{3}$. If the probability of not getting the job is $\frac{2}{3}$ then the value of x is (1) 2 (2) 1 (3) 3 (4) 1.5 If $(sin\alpha + cosec\alpha)^2 + (cos\alpha + sec\alpha)^2 = k + tan^2\alpha + cot^2\alpha$, then the value of k is equal to (1) 9 (2) 7 (3) 5 (4) 3 The volume (in cm ³) of the greatest sphere that can be cut off from a cylindrical log of wood of base radius 1 cm and height 5 cm is (1) $\frac{4}{3}\pi$ (2) $\frac{10}{3}\pi$ (3) 5π (4) $\frac{20}{3}\pi$ If the standard deviation of x, y, z is p then the standard deviation of $3x + 5$, $3y + 5$, 3z + 5 is (1) $3p + 5$ (2) $3p$ (3) $p + 5$ (4) $9p + 15If slope of the line PQ is \frac{1}{\sqrt{3}} then the slope of the perpendicular bisector of PQ is(1) \sqrt{3} (2) -\sqrt{3} (3) \frac{1}{\sqrt{3}} (4) 0The angle of elevation of a cloud from a point h metres above a lake is \beta. The angleof depression of its reflection in the lake is 45^\circ. The height of location of the cloud from$
 28. 29. 30. 31. 32. 33. 34. 	The equation of a straight line having stope 5 and y-intercept -4 is (1) $3x - y - 4 = 0$ (2) $3x + y - 4 = 0$ (3) $3x - y + 4 = 0$ (4) $3x + y + 4 = 0$ A frustum of a right circular cone is of height 16 <i>cm</i> with radii of its ends as 8 <i>cm</i> and 20 <i>cm</i> . Then, the volume of the frustum is (1) 3328 π <i>cm</i> ³ (2) 3228 π <i>cm</i> ³ (3) 3240 π <i>cm</i> ³ (4) 3340 π <i>cm</i> ³ The probability of getting a job for a person is $\frac{x}{3}$. If the probability of not getting the job is $\frac{2}{3}$ then the value of x is (1) 2 (2) 1 (3) 3 (4) 1.5 If $(sina + coseca)^2 + (cosa + seca)^2 = k + tan^2a + cot^2a$, then the value of k is equal to (1) 9 (2) 7 (3) 5 (4) 3 The volume (in <i>cm</i> ³) of the greatest sphere that can be cut off from a cylindrical log of wood of base radius 1 <i>cm</i> and height 5 <i>cm</i> is (1) $\frac{4}{3}\pi$ (2) $\frac{10}{3}\pi$ (3) 5π (4) $\frac{20}{3}\pi$ If the standard deviation of x, y, z is p then the standard deviation of $3x + 5$, $3y + 5$, 3z + 5 is (1) $3p + 5$ (2) $3p$ (3) $p + 5$ (4) $9p + 15If slope of the line PQ is \frac{1}{\sqrt{3}} then the slope of the perpendicular bisector of PQ is(1) \sqrt{3} (2) -\sqrt{3} (3) \frac{1}{\sqrt{3}} (4) 0The angle of elevation of a cloud from a point h metres above a lake is \beta. The angleof depression of its reflection in the lake is 45^\circ. The height of location of the cloud fromthe lake is (1) \frac{h(1+tan\beta)}{p} (2) \frac{h(1-tan\beta)}{p} (2) h tcm(45^\circ \theta) (4) pare of the could from$
 28. 29. 30. 31. 32. 33. 34. 	The equation of a straight line having stope 5 and y-intercept -4 is (1) $3x - y - 4 = 0$ (2) $3x + y - 4 = 0$ (3) $3x - y + 4 = 0$ (4) $3x + y + 4 = 0$ A frustum of a right circular cone is of height 16 <i>cm</i> with radii of its ends as 8 <i>cm</i> and 20 <i>cm</i> . Then, the volume of the frustum is (1) $3328 \pi cm^3$ (2) $3228 \pi cm^3$ (3) $3240 \pi cm^3$ (4) $3340 \pi cm^3$ The probability of getting a job for a person is $\frac{x}{3}$. If the probability of not getting the job is $\frac{2}{3}$ then the value of x is (1) 2 (2) 1 (3) 3 (4) 1.5 If $(sin\alpha + coseca)^2 + (cos\alpha + seca)^2 = k + tan^2\alpha + cot^2\alpha$, then the value of k is equal to (1) 9 (2) 7 (3) 5 (4) 3 The volume (in <i>cm</i> ³) of the greatest sphere that can be cut off from a cylindrical log of wood of base radius 1 <i>cm</i> and height 5 <i>cm</i> is (1) $\frac{4}{3} \pi$ (2) $\frac{10}{3} \pi$ (3) 5π (4) $\frac{20}{3} \pi$ If the standard deviation of x, y, z is p then the standard deviation of $3x + 5$, $3y + 5$, 3z + 5 is (1) $3p + 5$ (2) $3p$ (3) $p + 5$ (4) $9p + 15If slope of the line PQ is \frac{1}{\sqrt{3}} then the slope of the perpendicular bisector of PQ is(1) \sqrt{3} (2) -\sqrt{3} (3) \frac{1}{\sqrt{3}} (4) 0The angle of elevation of a cloud from a point h metres above a lake is \beta. The angleof depression of its reflection in the lake is 45^\circ. The height of location of the cloud fromthe lake is (1) \frac{h(1+tan\beta)}{1-tan\beta} (2) \frac{h(1-tan\beta)}{1+tan\beta} (3) h tan(45^\circ -\beta) (4) none of these$
 28. 29. 30. 31. 32. 33. 34. 35. 	The equation of a straight line having stope 5 and y-intercept -4 is (1) $3x - y - 4 = 0$ (2) $3x + y - 4 = 0$ (3) $3x - y + 4 = 0$ (4) $3x + y + 4 = 0$ A frustum of a right circular cone is of height 16 <i>cm</i> with radii of its ends as 8 <i>cm</i> and 20 <i>cm</i> . Then, the volume of the frustum is (1) $3328 \pi cm^3$ (2) $3228 \pi cm^3$ (3) $3240 \pi cm^3$ (4) $3340 \pi cm^3$ The probability of getting a job for a person is $\frac{x}{3}$. If the probability of not getting the job is $\frac{2}{3}$ then the value of x is (1) 2 (2) 1 (3) 3 (4) 1.5 If $(sin\alpha + cosec\alpha)^2 + (cos\alpha + sec\alpha)^2 = k + tan^2\alpha + cot^2\alpha$, then the value of k is equal to (1) 9 (2) 7 (3) 5 (4) 3 The volume (in <i>cm</i> ³) of the greatest sphere that can be cut off from a cylindrical log of wood of base radius 1 <i>cm</i> and height 5 <i>cm</i> is (1) $\frac{4}{3}\pi$ (2) $\frac{10}{3}\pi$ (3) 5π (4) $\frac{20}{3}\pi$ If the standard deviation of x, y, z is p then the standard deviation of $3x + 5$, $3y + 5$, 3z + 5 is (1) $3p + 5$ (2) $3p$ (3) $p + 5$ (4) $9p + 15If slope of the line PQ is \frac{1}{\sqrt{3}} then the slope of the perpendicular bisector of PQ is(1) \sqrt{3} (2) -\sqrt{3} (3) \frac{1}{\sqrt{3}} (4) 0The angle of elevation of a cloud from a point h metres above a lake is \beta. The angleof depression of its reflection in the lake is 45^\circ. The height of location of the cloud fromthe lake is (1) \frac{h(1+tan\beta)}{1-tan\beta} (2) \frac{h(1-tan\beta)}{1+tan\beta} (3) h tan(45^\circ - \beta) (4) none of theseThe curved surface area of a cylinder is 264m^2 and its volume is 924m^2. The ratio ofdiameter to its height is (1) 3\cdot7 (2) -7\cdot3 (2) -7\cdot3 (3) -1\cdot2 (3) -1\cdot2 (3) -1\cdot2 (3) -1\cdot2 (4) 7\cdot6$

M.PALANIAPPAN, SGHSS, Nerkuppai, SVG Dist. 9942904874

1		• •	-	
	70	X 7 X		0000

	If <i>A</i> is a point on the <i>Y</i> axis whose ordinate is 8 abscissae is 5 then the equation of the line <i>AB</i>	and B is a point on the X axis whis	nose
	(1) $8x + 5y = 40$ (2) $8x - 5y = 40$	(3) $x = 8$ (4) $y = 5$	5
37.	If $5x = sec\theta$ and $\frac{5}{x} = tan\theta$, then $x^2 - \frac{1}{x^2}$ is eq	ual to	
	(1) 25 (2) $\frac{1}{25}$	(3) 5 (4) 1	
38.	If the radius of the base of a right circular cylinder the ratio of the volume of the cylinder cylinder is (1) 1:2 (2) 1:4	inder is halved keeping the same thus obtained to the volume of (3) 1:6 (e height, original 4) 1:8
39.	If a letter is chosen at random from the	English alphabets $\{a, b, \dots, z\}$, t	nen the
	(1) (2) (2) (2) (3)	$(2)^{23}$ $(4)^{3}$	
40	(1) $\frac{1}{13}$ (2) $\frac{1}{13}$	$(3) \frac{1}{26} \qquad (4) \frac{1}{26}$	
40.	The equation of a line passing through the ong $7x - 3y + 4 = 0$ is	in and perpendicular to the line	
	(1) $7x - 3y + 4 = 0$ (2) $3x - 7y + 4 = 0$	$(3) \ 3x + 7y = 0 \qquad (4) \ 7x - $	3y = 0
41.	The electric pole subtends an angle of 30° at a second point 'b' metres above the first, the de The height of the pole (in metres) is equal to	a point on the same level as its for epression of the foot of the pole	oot. At a is 60°.
	(1) $\sqrt{3} b$ (2) $\frac{b}{3}$	(3) $\frac{b}{2}$ (4) $\frac{b}{\sqrt{3}}$	
42. 43.	Curved surface area of solid sphere is 24 hemispheres, then the total surface area of one (1) $12 cm^2$ (2) $8 cm^2$ Kamalam went to play a lucky draw contest. 1	cm^2 . If the sphere is divided is of the hemispheres is (3) $16 cm^2$ (4) $18 cm^2$ 35 tickets of the lucky draw were	into two n^2 sold. If
_	the probability of Kamalam winning is $\frac{1}{2}$.	then the number of tickets be	ught by
	y 1 (1) 5 (0) 10	(2) 15	
	Kamalam is (1) 5 (2) 10	(3) 15	(4) 20
44.	Kamalam is (1) 5 (2) 10 Consider four straight lines (i) $l_1 : 3y = 4x + 5$ (ii) $l_2 : 4y = 3x - 1$ (ii) Which of the following statement is true ?	(3) 13 i) $l_3 : 4y + 3x = 7$ (iv) $l_4 : 4x + 3y$	(4) 20 = 2
44.	Kamalam is (1) 5 (2) 10 Consider four straight lines (i) $l_1 : 3y = 4x + 5$ (ii) $l_2 : 4y = 3x - 1$ (ii) Which of the following statement is true ? (1) l_1 and l_2 are perpendicular (3) l_2 and l_3 are perpendicular (4)	(5) 15 i) $l_3 : 4y + 3x = 7$ (iv) $l_4 : 4x + 3y$ 2) l_1 and l_4 are parallel (1) $l_2 = 20$ (iv) $l_4 : 4x + 3y$	(4) 20 = 2
44. 45.	Kamalam is (1) 5 (2) 10 Consider four straight lines (i) $l_1 : 3y = 4x + 5$ (ii) $l_2 : 4y = 3x - 1$ (ii) Which of the following statement is true ? (1) l_1 and l_2 are perpendicular ((3) l_2 and l_4 are perpendicular (A ladder of length 14 <i>m</i> just reaches the top of 60° with the horizontal, then the height of the v	(5) 15 a) $l_3: 4y + 3x = 7$ (iv) $l_4: 4x + 3y$ (iv) l_1 and l_4 are parallel (iv) l_2 and l_3 are parallel (iv) $l_4: 4x + 3y$ (iv) $l_4: 4x + 3y$	(4) 20 = 2 gle of
44. 45.	Kamalam is (1) 5 (2) 10 Consider four straight lines (i) $l_1 : 3y = 4x + 5$ (ii) $l_2 : 4y = 3x - 1$ (ii) Which of the following statement is true ? (1) l_1 and l_2 are perpendicular ((3) l_2 and l_4 are perpendicular (A ladder of length 14 <i>m</i> just reaches the top of 60° with the horizontal, then the height of the v (1) $14\sqrt{3}m$ (2) $28\sqrt{3}m$	(3) 13 (a) $l_3: 4y + 3x = 7$ (iv) $l_4: 4x + 3y$ (c) l_1 and l_4 are parallel (c) l_2 and l_3 are parallel (c) a wall. If the ladder makes an an (c) $7\sqrt{3} m$ (c) $35\sqrt{3}$	(4) 20 = 2 gle of $\overline{5}m$
44.45.46.	Kamalam is (1) 5 (2) 10 Consider four straight lines (i) $l_1 : 3y = 4x + 5$ (ii) $l_2 : 4y = 3x - 1$ (ii) Which of the following statement is true ? (1) l_1 and l_2 are perpendicular ((3) l_2 and l_4 are perpendicular (A ladder of length 14 <i>m</i> just reaches the top of 60° with the horizontal, then the height of the v (1) $14\sqrt{3}m$ (2) $28\sqrt{3}m$ (1 + $tan \theta + sec \theta$)(1 + $cot\theta - cosec\theta$) is equal to	(3) 13 (a) $l_3: 4y + 3x = 7$ (iv) $l_4: 4x + 3y$ (c) l_1 and l_4 are parallel (c) l_2 and l_3 are parallel (c) l_3 (c)	(4) 20 = 2 gle of $\overline{5}m$
44.45.46.	Kamalam is (1) 5 (2) 10 Consider four straight lines (i) $l_1 : 3y = 4x + 5$ (ii) $l_2 : 4y = 3x - 1$ (ii) Which of the following statement is true ? (1) l_1 and l_2 are perpendicular ((3) l_2 and l_4 are perpendicular (A ladder of length 14 <i>m</i> just reaches the top of 60° with the horizontal, then the height of the v (1) $14\sqrt{3}m$ (2) $28\sqrt{3}m$ (1) $14\sqrt{3}m$ (2) $28\sqrt{3}m$ (1) $tan \theta + sec \theta$)($1 + cot\theta - cosec\theta$) is equal to (1) 0 (2) 1	(3) 13 (3) $l_3: 4y + 3x = 7$ (iv) $l_4: 4x + 3y$ (2) l_1 and l_4 are parallel (3) l_2 and l_3 are parallel (3) $7\sqrt{3}m$ (4) $35\sqrt{3}$ (3) 2 (4) -1	(4) 20 = 2 gle of $\overline{5}m$
44.45.46.47.	Kamalam is (1) 5 (2) 10 Consider four straight lines (i) $l_1 : 3y = 4x + 5$ (ii) $l_2 : 4y = 3x - 1$ (ii) Which of the following statement is true ? (1) l_1 and l_2 are perpendicular ((3) l_2 and l_4 are perpendicular (A ladder of length 14 <i>m</i> just reaches the top of 60° with the horizontal, then the height of the v (1) $14\sqrt{3}m$ (2) $28\sqrt{3}m$ (1) $14\sqrt{3}m$ (2) $28\sqrt{3}m$ (1 + $tan \theta + sec \theta$)(1 + $cot\theta - cosec\theta$) is equal to (1) 0 (2) 1 The curved surface area of a right circular con is (1) $60\pi cm^2$ (2) $68\pi cm^2$	(3) 13 (3) $l_3: 4y + 3x = 7$ (iv) $l_4: 4x + 3y$ (2) l_1 and l_4 are parallel (3) l_2 and l_3 are parallel (3) $7\sqrt{3}m$ (4) $35\sqrt{3}$ (3) 2 (4) -1 (3) $120\pi cm^2$ (4) 1	(4) 20 = 2 gle of $\overline{5}m$ ter 16 cm 36π cm ²
44.45.46.47.48.	Kamalam is (1) 5 (2) 10 Consider four straight lines (i) $l_1 : 3y = 4x + 5$ (ii) $l_2 : 4y = 3x - 1$ (ii) Which of the following statement is true ? (1) l_1 and l_2 are perpendicular ((3) l_2 and l_4 are perpendicular (A ladder of length 14 <i>m</i> just reaches the top of 60° with the horizontal, then the height of the v (1) $14\sqrt{3}m$ (2) $28\sqrt{3}m$ (1 + $tan \theta + sec \theta$)(1 + $cot\theta - cosec\theta$) is equal to (1) 0 (2) 1 The curved surface area of a right circular con is (1) $60\pi cm^2$ (2) $68\pi cm^2$ The probability of a red marble selected at range	(3) 13 (3) $l_3: 4y + 3x = 7$ (iv) $l_4: 4x + 3y$ (2) l_1 and l_4 are parallel (3) l_2 and l_3 are parallel (3) $7\sqrt{3} m$ (4) $35\sqrt{3}$ (3) 2 (4) -1 (3) 2 (4) -1 (4) $15 cm$ and base diametric (3) $120\pi cm^2$ (4) 1 adom from a jar containing p red (4) $p = (2)^{p+q}$ (4)	(4) 20 = 2 gle of $\overline{5}m$ ter 16 cm $36\pi \ cm^2$, q blue $\frac{p+r}{2}$

M.PALANIAPPAN, SGHSS, Nerkuppai, SVG Dist. 9942904874

	www.kalvikual.com
50.	The angle of depression of the top and bottom of 20 m tall building from the top of a multistoried building are 30° and 60° respectively. The height of the multistoried building and the distance between two buildings (in metres) is
	(1) 20, $10\sqrt{3}$ (2) 30, $5\sqrt{3}$ (3) 20, 10 (4) 30, $10\sqrt{3}$
51.	If the radius of the base of a cone is tripled and the height is doubled then the volume is (1) made 6 times (2) made 18 times (3) made 12 times (4) unchanged
52.	Find the value of p, given that the line $\frac{y}{2} = x - p$ passess through the point (-4, 4) is
	(1) -4 $(2) -6$ $(3) 0$ $(4) 8$
53.	When proving that a quadrilateral is a trapezium, it is necessary to show
	(1) Two sides are parallel. (2) Two parallel and two non-parallel sides.
	(3) Opposite sides are parallel. (4) All sides are of equal length.
54.	If $x = atan\theta$ and $y = bsec\theta$ then
	(1) $\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$ (2) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (3) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (4) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$
55.	The range of the data 8, 8, 8, 8, 88 is
	(1) 0 (2) 1 (3) 8 (4) 3
56.	If t is the standard deviation of x, y, z , then the standard deviation of $x + 5$, $y + 5$, $z + 5$ is
	(1) $\frac{t}{3}$ (2) $t + 5$ (3) t (4) xyz
57.	(2, 1) is the point of intersection of two lines. (1) $x - y - 3 = 0$; $3x - y - 7 = 0$ (2) $x + y = 3$; $3x + y = 7$
	(3) $3x + y = 3$; $x + y = 7$ (4) $x + 3y - 3 = 0$; $x - y - 7 = 0$
58.	The standard deviation of a data is 3. If each value is multiplied by 5 then the newvariance is(1) 3(2) 15(3) 5(4) 225
59.	If two solid hemispheres of same base radius r units are joined together along their
	bases, then curved surface area of this new solid is
	(1) $4\pi r^2$ sq.units (2) $6\pi r^2$ sq.units (3) $3\pi r^2$ sq.units (4) $8\pi r^2$ sq.units
60.	If the standard deviation of a variable x is 4 and if $y = \frac{3x+5}{4}$, then the standard
	deviation of y is (1) 4 (2) 3.5 (3) 3 (4) 2.5
II.	Answer ALL the questions: $(5 \times 8 = 40)$
61.	Construct a triangle similar to a given triangle ABC with its sides equal to $\frac{6}{2}$ of the
01	corresponding sides of the triangle <i>ABC</i> (scale factor $\frac{6}{5}$)
62.	Construct a $\triangle PQR$ in which the base $PQ = 4.5$ cm, $\angle R = 35^{\circ}$ and the median from <i>R</i> to <i>PQ</i> is 6 cm.
63.	Draw a tangent to the circle from the point P having radius 3.6 cm, and centre at 0 point P is at a distance 7.2 cm from the centre.

- 64. Graph the equation $x^2 9x + 20 = 0$ and state its nature of solution.
- 65. Draw the graph of $y = x^2 5x 6$ and hence solve $x^2 5x 14 = 0$.

All the Best!