Unit-1: RELATIONS \& FUNCTIONS

1. The function $f: N \rightarrow R$ is defined by $f(x)=2^{n}$. The range of the function is
(1) The set of all even positive integers
(2) N
(3) R
(4) a subset of all even positive integers
2. Let f be a function $f: N \rightarrow N$ be defined by $f(x)=3 x+2, x \in N$. The preimage of 29 is
(1) 89
(2) 87
(3) 9
(4) $\frac{31}{3}$
3. If $\{(7,11),(5, a),(3, b)\}$ represents a constant function then (a, b) is
(1) $(5,3)$
$(2)(3,5)$
(3) $(11,11)$
$(4)(7,7)$
4. The domain of a function $f(x)=\frac{1}{x(x+1)}$
(1) $\{0,-1\}$
(2) $R-\{0,-1\}$
(3) $R-\{0\}$
(4) $R-\{-1\}$
5. If $A \times B=\{(3,2),(3,4),(5,2),(5,4)\}$ then A is
(1) $\{3,5\}$
(2) $\{2,4\}$
(3) $\{2,3,4,5\}$
(4) $\}$
6. If $f(x)=x^{2}-x$ then $f(x-1)-f(x+1)$ is ----------
(1) $4 x$
(2) $4 x+2$
(3) $2-4 x$
(4) $4 x-2$
7. If $f(x)=\frac{1}{x}$ and $g(x)=-\frac{1}{x}$ then $f \circ g=$?
(1) $-x$
(2) $\frac{1}{x}$
(3) $-\frac{1}{x}$
(4) x
8. If there are 28 relations from a set $A=\{2,4,6,8\}$ to a set B, then the number of elements in B is
(1) 7
(2) 14
(3) 5
(4) 4
9. A function $f: A \rightarrow B$ is said to be a bijective function if f is \qquad function
(1) one-one but not onto
(2) onto but not one - one
(3) both one - one and onto
(4) one - one and into
10. Composition of functions is associative
(1) Always true
(2) Never true
(3) Sometimes true
(4) Not defined

Unit-2: NUMBERS \& SEQUENCES

11. If $55 \equiv k(\bmod 11)$ then the value of k is
(1) 0
(2) 5
(3) 10
(4) 11
12. The p th term of an AP is $\frac{3 p-1}{6}$. The sum of the first n terms of the AP is
(1) $n(3 n+1)$
(2) $\frac{n(3 n+1)}{12}$
(3) $\frac{n(3 n-1)}{12}$
(4) $n(3 n-1)$
13. If m, p, q are consecutive terms in an A.P. then p is
(1) $\frac{m q}{2}$
(2) $\frac{m-q}{2}$
(3) $\frac{m^{2}+q^{2}}{2}$
(4) $\frac{m+q}{2}$
14. When $x=2$, the value of $1+x+x^{2}+\cdots+x^{9}$ is
(1) 511
(2) 1023
(3) 513
(4) 1025
15. The sequence $a_{n}=2 n+1$ is an A.P. then the common difference is \qquad
(1) 5
(2) 7
(3) 3
(4) 2
16. Common ratio of the G.P., $\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2 \sqrt{2}}, \ldots$ is
(1) $\frac{1}{\sqrt{2}}$
(2) $\sqrt{2}$
(3) 2
(4) $\frac{1}{2}$
17. Number of multiples of 7 between 100 and 300 is
(1) 21
(2) 24
(3) 28
(4) 35
18. $a_{n}=\left\{\begin{array}{l}n^{2} \text { if } n \text { is odd } \\ 2 n \text { if } n \text { is even }\end{array} \quad a_{5}\right.$ and a_{6} are \ldots
(1) 25,24
(2) 25,10
(3) 25,12
(4) 36,12
19. The $n^{\text {th }}$ term of the sequence $\frac{1}{2}, \frac{3}{4}, \frac{5}{6}, \frac{7}{8} \ldots$ Is
(1) $1+\frac{1}{2 n}$
(2) $1-\frac{1}{2 n}$
(3) $1-\frac{1}{n+2}$
(4) $\frac{n-1}{n+2}$
20. The sequence $\sqrt{11}, \sqrt{55}, 5 \sqrt{11}, 5 \sqrt{55}, 25 \sqrt{11} \ldots$ is
(1) A.P.
(2) G.P.
(3) both A.P. and G.P.
(4) neither A.P. nor G.P
21. If $t_{1}=n, t_{2}=n+1, t_{3}=n+2$ and so on then $t_{n}=$?
(1) n
(2) $2 n-1$
(3) $2 n+1$
(4) $2 n$
22. The series of the sequence $a_{n}=1+(-1)^{n}$ is
(1) $0+2+0+2+\ldots$
(2) $2+2+2+\ldots$
(3) $1+1+1+1+\ldots$
(4) $1-1+1-1+\cdots$
23. First term of the G.P. is 1 . The sum of $3^{\text {rd }}$ and $5^{\text {th }}$ term is 90 then the common ratio is \qquad
(1) ± 10
(2) ± 9
(3) ± 5
(4) ± 3
24. The value of x such that $8 x+4,6 \mathrm{x}-2$ and $2 x+7$ will form an AP is
(1) 15
(2) 2
(3) $\frac{15}{2}$
(4) 1
25. $10^{\text {th }}$ term of an A.P. is $52,16^{\text {th }}$ term is 82 , then its $n^{\text {th }}$ term is..
(1) $n+2$
(2) $5 n-2$
(3) $5 n+2$
(4) $5 n$
26. Solution of $\frac{1}{x}+\frac{1}{y}=2$ and $\frac{1}{x}-\frac{1}{y}=4$ is
(1) $x=\frac{1}{3}, y=-1$
(2) $x=\frac{1}{3}, y=3$
(3) $x=3, y=\frac{1}{3}$
(4) $x=\frac{1}{3}, y=\frac{1}{3}$
27. The LCM of $2^{k}, 2^{k+1}, 2^{k+5}$ where $k \in N$ is
(1) 2
(2) 2^{k}
(3) 2^{k+1}
(4) 2^{k+5}
28. $\frac{a^{2}}{a^{2}-b^{2}}+\frac{b^{2}}{b^{2}-a^{2}}=$?
(1) $a-b$
(2) $a+b$
(3) $a^{2}-b^{2}$
(4) 1
29. The area of rectangle is $\frac{(x-4)(x+3)}{3 x-12}$ and the length is $\left(\frac{x-3}{3}\right)$. Its breadth is \qquad
(1) $\frac{x-3}{x+3}$
(2) $\frac{x+3}{x-3}$
(3) 1
(4) 3
30. Square root of $16 x^{2}+9 y^{2}-24 x y+24 x-18 y+9$ is
(1) $|4 x-3 y+3|$
(2) $|4 x+3 y-3|$
(3) $|4 x+3 y+3|$
(4) $|4 x-3 y-3|$
31. If $\frac{9}{y}+\frac{4}{x}=\frac{12}{\sqrt{x y}}$, where $x>0, y>0$, then $3 \sqrt{x}-2 \sqrt{y}=$
(1) 3
(2) 2
(3) 5
(4) 0
32. If one root of the equation $3 x^{2}-10 x+k=0$ is $\frac{1}{3}$ then the value of k is
(1) $\frac{1}{3}$
(2) -3
(3) 3
(4) $-\frac{1}{3}$
33. If $\alpha+\beta=14$ and $\alpha-\beta=2 \sqrt{3}$ then $\alpha \beta=$
(1) 42
(2) 44
(3) 46
(4) 48
34. LCM of $6 x^{2} y, 9 x^{2} y z^{3}, 12 x^{2} y^{2} z$ is
(1) $36 x y^{2} z^{2}$
(2) $26 x^{2} y^{2} z$
(3) $36 x^{2} y^{2} z^{3}$
(4) $36 x y^{2} z$
35. The value of $\sqrt{(1-x)^{2}(2-x)^{2}(3-x)^{2}}$ when $x=4$ is
(1) 3
(2) -3
(3) 6
(4) -6
36. What should be added to $x(x+14)$, so that the resulting quadratic polynomial becomes a
perfect square
(1) 14
(2) 7
(3) $\sqrt{7}$
(4) 49
37. If α and α^{2} are the roots of the equation $x^{2}-b x+8=0$, then the value of b is
(1) 2
(2) 4
(3) 6
(4) 8
38. If the order of matrix A is 3×4 and the order of B is 5×3 then the order of the transpose of a product matrix BA is
(1) 4×3
(2) 4×5
(3) 5×4
(4) 3×3
39. If $\left(\begin{array}{lll}-1 & -2 & 4\end{array}\right)\left(\begin{array}{r}2 \\ a \\ -3\end{array}\right)=(-10)$ then the value of a is
(1) 2
(2) -4
(3) 4
(4) -2
40. If $\mathrm{A}=\left[a_{i j}\right]_{2 \times 2}$ and $a_{i j}=i+j$ then $\mathrm{A}=$?
(1) $\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$
(2) $\left(\begin{array}{ll}2 & 3 \\ 3 & 4\end{array}\right)$
(3) $\left(\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right)$
(4) $\left(\begin{array}{ll}4 & 5 \\ 6 & 7\end{array}\right)$
41. $\mathrm{A}=\left(\begin{array}{ll}4 & -2 \\ 6 & -3\end{array}\right)$ then $A^{2}=$?
(1) $\left(\begin{array}{ll}16 & 4 \\ 36 & 9\end{array}\right)$
(2) $\left(\begin{array}{cc}8 & -4 \\ 12 & -6\end{array}\right)$
(3) $\left(\begin{array}{ll}-4 & 2 \\ -6 & 3\end{array}\right)$
(4) $\left(\begin{array}{ll}4 & -2 \\ 6 & -3\end{array}\right)$
42. $\mathrm{A}=\left(\begin{array}{lll}1 & -2 & 3\end{array}\right), \mathrm{B}=\left(\begin{array}{c}-1 \\ 2 \\ -3\end{array}\right)$ then $\mathrm{A}+\mathrm{B}^{T}=$?
(1) $\left(\begin{array}{lll}0 & 0 & 0\end{array}\right)$
(2) $\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$
(3) (246)
(4) not defined
43. $A \times\left(\begin{array}{l}2 \\ 3 \\ 6\end{array}\right)=\binom{11}{13}$ then the order of matrix A is
(1) 3×2
(2) 2×3
(3) 3×1
(4) 2×1
44. $\left(\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right)$ is a
(1) Unit matrix
(2) scalar matrix
(3) square matrix
(4) diagonal matrix
45. $\left(\begin{array}{cc}x+y & x-y \\ 8 & 5\end{array}\right)=\left(\begin{array}{ll}8 & 2 \\ 8 & z\end{array}\right)$ then x, y, z are
(1) $5,3,5$
(2) $6,2,5$
(3) $5,-2,5$
(4) $5,-3,5$

Unit-4: GEOMETRY

46. In $\triangle \mathrm{ABC}, \mathrm{DE} \| \mathrm{AB}$ and $\mathrm{AD}: \mathrm{DC}=3: 2$. Then (area of $\triangle \mathrm{ABC}):($ area of $\triangle \mathrm{DEC})=$?
(1) $4: 25$
(2) $4: 9$
(3) $9: 4$
(4) $25: 4$
47. If $\triangle \mathrm{ABC}$ is an isosceles, right triangle with $\angle \mathrm{C}=90^{\circ}$ then
(1) $A B^{2}=2 A C^{2}$
(2) $A C^{2}=2 A B^{2}$
(3) $B C^{2}=2 A C^{2}$
(4) $A C^{2}=2 B C^{2}$
48. If $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$ and Area of $\triangle \mathrm{PQR}=4$ (Area of $\triangle \mathrm{ABC}$) then $\mathrm{AB}: \mathrm{PQ}$ is
(1) $2: 1$
(2) $4: 1$
(3) $1: 2$
(4) $1: 4$
49. In $\triangle \mathrm{ABC}, \mathrm{AB}=6 \mathrm{~cm}$ and AD is the angle bisector of $\angle \mathrm{A}$. If $\mathrm{BD}: \mathrm{DC}=3: 2$ then $\mathrm{AC}=$?
(1) 4 cm
(2) 6 cm
(3) 2 cm
(4) 8 cm
50. In the figure, T'PT is tangent to the circle at P . If $\angle \mathrm{QPT}^{\prime}=130^{\circ}$ then $\angle \mathrm{PRQ}=$?
(1) 65°
(2) 50°
(3) 130°
(4) 40°

51. In $\triangle \mathrm{ABC}, \mathrm{DE} \| \mathrm{BC}$ meeting AB and AC at D and E . If $\mathrm{AD}=3 \mathrm{~cm}, \mathrm{DB}=2 \mathrm{~cm}$ and $\mathrm{AE}=2.7 \mathrm{~cm}$,
then $\mathrm{AC}=$?
(1) 1.8 cm
(2) 4.5 cm
(3) 3.5 cm
(4) 5.5 cm
52. In the figure, C is the centre of the concentric circles, the chord $P Q$ touches smaller circle of radius 3 cm at R. If $P Q=8 \mathrm{~cm}$ then the radius of larger circle is
(1) 3 cm
(2) 4 cm
(3) 5 cm
(4) 2 cm

53. If the tangents PA and PB from an external point P to circle with centre 0 are inclined each other at an angle of 40° from $\angle \mathrm{POA}=$?
(1) 70°
(2) 80°
(3) 50°
(4) 60°
54. In the figure, $\frac{A B}{A C}=\frac{B D}{D C}, \angle \mathrm{~B}=40^{\circ}$ and $\angle \mathrm{C}=60^{\circ}$ then $\angle \mathrm{BAD}=$?
(1) 30°
(2) 50°
(3) 80°
(4) 40°

55. If a vertical stick 12 m long casts a shadow 8 m long on the ground and at the same time a tower casts a shadow 40 m long on the ground, then the height of the tower is....
(1) 40 m
(2) 50 m
(3) 75 m
(4) 60 m

Unit-5: COORDINATE GEOMETRY

56. If $(x, 2)$ is the midpoint of the line segment joining $(3,4)$ and $(1, y)$ then the value of x and y are respectively
(1) 1,2
(2) 2,0
(3) $2,-2$
(4) $1,-2$
57. The area of the triangle formed by the points $(0,0)\left(\frac{46}{7}, 0\right)$ and $\left(0, \frac{21}{23}\right)$ is \ldots
(1) 6 units
(2) 2 units
(3) 3 units
(4) 4 units
58. The angle between the line $x=y$ and $\sqrt{3} x-y=0$ is
(1) 15°
(2) 30°
(3) 60°
(4) 90°
59. The equation of the straight line whose x and y intercepts are 2 and 3 respectively is
(1) $2 x+3 y=6$
(2) $3 x+2 y=6$
(3) $2 x+3 y=0$
(4) $3 x+2 y=0$
60. The centre of a circle is at $(3,4)$. If the circle touches the x-axis, then the radius of the circle is
(1) 3 units
(2) 4 units
(3) 5 units
(4) 7 units
61. The area of a quadrilateral formed by the points $(-1,1),(1,1),(1,-1)$ and $(-1,-1)$ is..
(1) zero
(2) 4 sq. units
(3) 25 sq. units
(4) 1 sq. unit
62. If $(5,7),(3, a)$ and $(6,6)$ are collinear, then the value of a is
(1) 3
(2) 6
(3) 9
(4) 12
63. The vertices of a triangle are $A(3,-5), B(-2,1)$ and $C(0,-1)$, then the slope of the altitude
through A us
(1) $\frac{1}{2}$
(2) -2
(3) 1
(4) -1
64. The equation of a line passing through the origin and perpendicular to the line $2 x+3 y-7=0$ is
(1) $2 x+3 y=0$
(2) $3 x-2 y=0$
(3) $y+5=0$
(4) $y-5=0$
65. The x intercept of the line $2 x-y=10$ is
(1) 5
(2) 10
(3) -10
(4) not defined

Unit-6: TRIGONOMETRY

66. $\frac{\sqrt{1-\sin ^{2} \theta}}{\sin \theta}=$?
(1) $\cot \theta$
(2) $\frac{\sin \theta}{2}$
(3) $\tan \theta$
(4) 1
67. If $\tan \theta+\cot \theta=2$, then $\tan ^{2} \theta+\cot ^{2} \theta=$?
(1) 0
(2) 1
(3) 2
(4) 4
68. If $\cot \theta=\frac{x}{a}$ then $\frac{x}{\sqrt{a^{2}+x^{2}}}=$?
(1) $\cos \theta$
(2) $\sin \theta$
(3) $\operatorname{cosec} \theta$
(4) $\sec \theta$
69. The shadow of a pillar of height 5 m is 5 m . The angle of elevation is
(1) 90°
(2) 45°
(3) 60°
(4) 30°
70. If $\operatorname{cosec} A-\cot A=5$, then $\operatorname{cosec} A+\cot A=$?
(1) -5
(2) 5
(3) $\frac{1}{5}$
(4) $-\frac{1}{5}$
71. $\frac{1}{1+\sin \theta}+\frac{1}{1-\sin \theta}=$?
(1) $2 \cos ^{2} \theta$
(2) $2 \sec ^{2} \theta$
(3) $\frac{1}{2} \cos ^{2} \theta$
(4) $\frac{1}{2} \sec ^{2} \theta$
72. $\frac{\sin \theta-\sin ^{3} \theta}{\cos \theta-\cos ^{3} \theta}=$?
(1) $\tan ^{2} \theta$
(2) $\cot ^{2} \theta$
(3) $\tan \theta$
(4) $\cot \theta$
73. $\sin ^{2} 20^{\circ}+\sin ^{2} 70^{\circ}-\tan 45^{\circ}=$?
(1) 1
(2) 0
(3) 2
(4) -1
74. A ladder leaning against a vertical wall, makes an angle 60° with the ground. The foot of the ladder is 3.5 m away from the wall. The length of the ladder is...
(1) $3.5 \sqrt{3} \mathrm{~m}$
(2) 3.5 m
(3) 7 m
(4) $3.5 \sqrt{2} \mathrm{~m}$
75. The angular elevation of the sun when the length of the shadow of a 30 m long pole is $10 \sqrt{3} \mathrm{~m}$ is
(1) 30°
(2) 60°
(3) 90°
(4) 45°

Unit-7: MENSURATION

76. If two cylinders have their radii in the ratio $4: 5$ and heights are in the ratio $5: 6$ then the ratio of their volumes is ...
(1) $8: 15$
(2) $15: 8$
(3) $6: 5$
(4) $4: 5$
77. A child reshapes a cone made up of China clay of height 24 cm and radius 6 cm into a sphere. The radius of the sphere is... (1) $24 \mathrm{~cm} \quad$ (2) $12 \mathrm{~cm} \quad$ (3) $6 \mathrm{~cm} \quad$ (4) 48 cm
78. The ratio of the volume of a cube to that of a sphere which exactly fits into the cube is...
(1) $\pi: 1$
(2) $4: 3$
(3) $6: \pi$
(4) $\pi: 6$
79. If a rectangle of length 44 cm and breadth 4 cm is folded by bringing their breadth together to form a cylinder then the height of the cylinder thus formed is
(1) 44 cm
(2) 22 cm
(3) 7 cm
(4) 4 cm
80. A cylindrical tank has a capacity of $6160 \mathrm{~m}^{3}$. The diameter of the base is 28 m . Then the depth is
(1) 10 m
(2) 5 m
(3) 20 m
(4) 15 m
81. The volume of a cone is \qquad of that of cylinder
(1) three times
(2) equal
(3) half
(4) one-third
82. The total surface area of hemisphere of diameter 7 cm is
(1) 308 sq. cm
(2) $462 \mathrm{sq} . \mathrm{cm}$
(3) $115.5 \mathrm{sq} . \mathrm{cm}$
(4) $77 \mathrm{sq} . \mathrm{cm}$
83. If the radius of the cone is same as the height is equal to a, then is slant height is ...
(1) $2 \sqrt{a}$
(2) $\sqrt{2} a$
(3) $\sqrt{2 a}$
(4) $2 a$
84. A sector containing an angle 120° is cut off from a circle of radius 21 cm is folded into a cone. The
base radius of the cons is
(1) $\frac{21}{2} \mathrm{~cm}$
(2) 7 cm
(3) 14 cm
(4) $\frac{120}{21} \mathrm{~cm}$
85. If the surface area of a sphere is $100 \pi \mathrm{~cm}^{2}$ then its diameter is equal to
(1) 25 cm
(2) 50 cm
(3) 5 cm
(4) 10 cm

Unit-8: STATISTICS \& PROBABILITY

86. The variance of the first 7 natural numbers is
(1) 5
(2) 4
(3) 16
(4) 8
87. Variance of a set of data is 1.96. Its standard deviation is...
(1) 0.14
(2) 1.4
(3) 1.3
(4) $(1.96)^{2}$
88. The range of first 10 prime numbers is
(1) 28
(2) 22
(3) 29
(4) 27
89. The greatest value of a collection of data is 72 and the least value is 28 . Then the coefficient of
range is
(1) 44
(2) 4.4
(3) 0.44
(4) 100
90. Standard deviation of a collection of data is $2 \sqrt{2}$. If each value is multiplied by $\sqrt{2}$ then the standard deviation of new data is
(1) 2
(2) 4
(3). $2 \sqrt{2}$
(4) $4 \sqrt{2}$
91. Which one of the following condition is true when the standard deviation (σ) lies between 0 and 1
(1) $\sigma>\sigma^{2}$
(2) $\sigma \geq \sigma^{2}$
(3) $\sigma<\sigma^{2}$
(4) $\sigma \leq \sigma^{2}$
92. If $\mathrm{P}(\mathrm{A})=0.34, \mathrm{P}(\mathrm{B})=0.46$ and A and B are mutually exclusive events then $\mathrm{P}(\mathrm{A} \cup \mathrm{B})=$?
(1) 0.34
(2) 0.80
(3) 0.46
(4) 0.12
93. Which of the following values cannot be a probability of an event?
(i) 100%
(ii) $\frac{9898}{9897}$
(iii) 0.000001
(iv) $\frac{1-\sqrt{3}}{2}$
(1) (i) and (ii)
(2) (ii) only
(3) (iii) and (iv)
(4) (ii) and (iv)
94. The probability of getting 53 Sundays in a leap year is
(1) $\frac{2}{7}$
(2) $\frac{1}{7}$
(3) $\frac{7}{53}$
(4) $\frac{1}{53}$
95. The probability of drawing the number 6 from a well shuffled pack of 52 cards is ...
(1) $\frac{1}{13}$
(2) $\frac{1}{2}$
(3) $\frac{1}{26}$
(4) $\frac{1}{4}$
96. The probability of drawing a red ball from a bag containing 4 white balls and 6 blue balls is
(1) $\frac{4}{10}$
(2) $\frac{6}{10}$
(3) 0
(4) 1
97. In a family of 3 children, the probability of having atleast one boy is
(1) $\frac{7}{8}$
(2) $\frac{1}{8}$
(3) $\frac{5}{8}$
(4) $\frac{3}{4}$
98. $\mathrm{P}(\mathrm{A} \cup \mathrm{B})+\mathrm{P}(\mathrm{A} \cap \mathrm{B})=$?
(1) $P(\bar{A})+P(\bar{B})$
(2) $\mathrm{P}(\mathrm{S})$
(3) φ
(4) $P(A)+P(B)$
99. A fair die is thrown once. The probability of getting a perfect cube number is
(1) 1
(2) 0
(3) $\frac{1}{2}$
(4) $\frac{1}{6}$
100. A number is selected from 1 to 25 . The probability that its prime is
(1) $\frac{9}{26}$
(2) $\frac{9}{25}$
(3) $\frac{10}{25}$
(4) $\frac{1}{3}$

All the best!

