

www.kalvikual.com

CREATIVE - MCQ

10TH MATHEMATICS

Created By: M. PALANIYAPPAN ,MSc,BEd, MPhil, SGHSS, NERKUPPAI, Sivagangai Dt. Mobile: 99429 04874

Unit-1: RELATIONS & FUNCTIONS

- 1. The function $f: N \to R$ is defined by $f(x) = 2^n$. The range of the function is (1) The set of all even registric integers (2) N (2) P
 - (1) The set of all even positive integers (2) N (3) R
 - (4) a subset of all even positive integers
- 2. Let *f* be a function $f: N \to N$ be defined by f(x) = 3x + 2, $x \in N$. The preimage of 29 is (1) 89 (2) 87 (3) 9 (4) $\frac{31}{3}$
- 3. If {(7,11), (5, a), (3, b)} represents a constant function then (a, b) is

 (1) (5,3)
 (2) (3,5)
 (3) (11, 11)
 (4) (7, 7)
- 4. The domain of a function $f(x) = \frac{1}{x(x+1)}$ (1) {0, -1} (2) $R - \{0, -1\}$ (3) $R - \{0\}$ (4) $R - \{-1\}$
- 5. If $A \times B = \{(3, 2), (3, 4), (5, 2), (5, 4)\}$ then A is (1) $\{3, 5\}$ (2) $\{2, 4\}$ (3) $\{2, 3, 4, 5\}$ (4) $\{\}$
- 6. If $f(x) = x^2 x$ then f(x 1) f(x + 1) is -----(1) 4x (2) 4x + 2 (3) 2 - 4x (4) 4x - 2
- 7. If $f(x) = \frac{1}{x}$ and $g(x) = -\frac{1}{x}$ then $f \circ g = ?$ (1) -x (2) $\frac{1}{x}$ (3) $-\frac{1}{x}$ (4) x

8. If there are 28 relations from a set $A = \{2, 4, 6, 8\}$ to a set B, then the number of elements in B is (1) 7 (2) 14 (3) 5 (4) 4

- 9. A function f: A → B is said to be a bijective function if f is ------ function (1) one-one but not onto
 (2) onto but not one one
 (3) both one one and onto
 (4) one one and into
- 10. Composition of functions is associative(1) Always true(2) Never true(3) Sometimes true(4) Not defined

www.kalvikual.com Unit-2: NUMBERS & SEQUENCES

11. If 55 $\equiv k \pmod{11}$) then the value of <i>l</i>	k is				
(1)0	(2) 5	(3) 10	(4) 11			
12. The p th term of an	AP is $\frac{3p-1}{6}$. The sum	n of the first n terms	s of the AP is			
(1) $n(3n+1)$	(2) $\frac{n(3n+1)}{12}$	(3) $\frac{n(3n-1)}{12}$	(4) $n(3n-1)$			
13. If m, p, q are conse	cutive terms in an A.P	. then <i>p</i> is				
$(1) \frac{mq}{2}$	(2) $\frac{m-q}{2}$	$(3)\frac{m^2+q^2}{2}$	$(4)\frac{m+q}{2}$			
2	2	Z	2			
14. When $x = 2$, the v	alue of $1 + x + x^2 + x^2$	$\cdots + x^9$ is				
(1) 511	(2) 1023	(3) 513	(4) 1025			
15 The sequence $a_{\rm c} =$	2n + 1 is an AP the	on the common differ	ence is			
(1) 5	(2) 7	(3) 3	(4) 2			
16. Common ratio of th	e G.P., $\sqrt{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \dots$. is				
$(1)^{1}$	$(2) \sqrt{2}$	(2) 2	$(4)^{1}$			
(1) $\frac{1}{\sqrt{2}}$	(2) VZ	(3) 2	$(4)\frac{1}{2}$			
17. Number of multiple (1) 21	(2) 24	and 300 is	(4) 25			
(1) (1)	(2) 24 dd	(3) 20	(4) 55			
18. $a_n = \begin{cases} n & i \\ 2n & i \\ n & is e \end{cases}$	a_5 and a_6 and a_6	are				
(1) 25, 24	(2) 25, 10	(3) 25, 12	(4) 36, 12			
19. The n^{th} term of the	19. The n^{th} term of the sequence $\frac{1}{2}$, $\frac{3}{4}$, $\frac{5}{6}$, $\frac{7}{8}$ Is					
(1) $1 + \frac{1}{2n}$	(2) $1 - \frac{1}{2n}$	(3) $1 - \frac{1}{n+2}$	(4) $\frac{n-1}{n+2}$			
20 The sequence $\sqrt{11}$	<u>√55 5√11 5√55</u>	$25\sqrt{11}$ is				
(1) A.P.	(2) G.P.	(3) both A.P. and G.	P. (4) neither A.P. nor G.P			
21. If $t_1 = n$, $t_2 = n + 1$	1, $t_3 = n + 2$ and so	on then $t_n = ?$				
(1) <i>n</i>	(2) $2n-1$	(3) 2n + 1	(4) 2 <i>n</i>			
22. The series of the se	quence $a_n = 1 + (-1)$	$(1)^n$ is				
(1) 0+2+0+2+	(2) 2+2+2+	(3) 1+1+1+	$-1+\dots$ (4) $1-1+1-1+\dots$			
23. First term of the G.P	P. is 1. The sum of 3^{ro}	^d and 5 th term is 90	then the common ratio is			
(1) ±10	(2) ±9	(3) ±5	(4) ±3			
24. The value of x such	that $8x + 4$, $6x - 2$	and $2x + 7$ will form	m an AP is			
(1) 15	(2) 2	(3) $\frac{15}{2}$	(4) 1			
25. 10 th term of an A.P. is 52, 16 th term is 82, then its n^{th} term is						
(1) $n + 2$	(2) $5n-2$	(3) $5n + 2$	(4) 5 <i>n</i>			

www.kalvikual.com

Unit-3: ALGEBRA

(1) $x = \frac{1}{3}, y = -1$ (2) $x = \frac{1}{3}, y = 3$ (3) $x = 3, y = \frac{1}{3}$ (4) $x = \frac{1}{3}, y = \frac{1}{3}$ 27. The LCM of $2^k, 2^{k+1}, 2^{k+5}$ where $k \in N$ is (1) 2 (2) 2^k (3) 2^{k+1} (4) 2^{k+5} 28. $\frac{a^2}{a^2 - b^2} + \frac{b^2}{b^2 - a^2} = ?$ (1) $a - b$ (2) $a + b$ (3) $a^2 - b^2$ (4)	4) 1					
27. The LCM of 2^k , 2^{k+1} , 2^{k+5} where $k \in N$ is (1) 2 (2) 2^k (3) 2^{k+1} (4) 2^{k+5} 28. $\frac{a^2}{a^2-b^2} + \frac{b^2}{b^2-a^2} = ?$ (1) $a - b$ (2) $a + b$ (3) $a^2 - b^2$ (4)	4) 1					
(1) 2 (2) 2^{k} (3) 2^{k+1} (4) 2^{k+5} 28. $\frac{a^{2}}{a^{2}-b^{2}} + \frac{b^{2}}{b^{2}-a^{2}} = ?$ (1) $a - b$ (2) $a + b$ (3) $a^{2} - b^{2}$ (4)	4) 1					
28. $\frac{a^2}{a^2-b^2} + \frac{b^2}{b^2-a^2} = ?$ (1) $a - b$ (2) $a + b$ (3) $a^2 - b^2$ (4)	4) 1					
20. $\frac{1}{a^2-b^2} + \frac{1}{b^2-a^2} - 1$ (1) $u - b$ (2) $u + b$ (3) $u - b$ (4)	Ŧ) 1					
$u - v - v - u^-$						
29. The area of rectangle is $\frac{(x-4)(x+3)}{3x-12}$ and the length is $\left(\frac{x-3}{3}\right)$. Its breadth is						
(1) $\frac{x-3}{x+3}$ (2) $\frac{x+3}{x-3}$ (3) 1 (4) 3						
30. Square root of $16x^2 + 9y^2 - 24xy + 24x - 18y + 9$ is						
(1) $ 4x - 3y + 3 $ (2) $ 4x + 3y - 3 $ (3) $ 4x + 3y + 3 $ (4) $ 4x - 3y - 3 $						
31. If $\frac{9}{x} + \frac{4}{x} = \frac{12}{\sqrt{x}}$, where $x > 0$, $y > 0$, then $3\sqrt{x} - 2\sqrt{y} = \frac{12}{\sqrt{x}}$						
$y x \sqrt{xy}$ (1) 3 (2) 2 (3) 5 (4) 0						
32. If one root of the equation $3x^2 - 10x + k = 0$ is $\frac{1}{2}$ then the value of k is						
(1) $\frac{1}{2}$ (2) -3 (3) 3 (4) $-\frac{1}{2}$						
33. If $\alpha + \beta = 14$ and $\alpha - \beta = 2\sqrt{3}$ then $\alpha\beta =$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
34. LLM of $6x^2y$, $9x^2yz^3$, $12x^2y^2z$ is (1) $36ry^2z^2$ (2) $26r^2y^2z$ (3) $36r^2y^2z^3$ (4) $36ry^2z$						
(1) 50xy 2 (2) 20x y 2 (3) 50x y 2 (1) 50xy 2						
35. The value of $\sqrt{(1-x)^2(2-x)^2(3-x)^2}$ when $x = 4$ is						
(1) 3 (2) -3 (3) 6 (4) -6						
36. What should be added to $x(x + 14)$, so that the resulting quadratic polynomial becomes a						
perfect square (1) 14 (2) 7 (3) $\sqrt{7}$	(4) 49					
37. If α and α^2 are the roots of the equation $x^2 - bx + 8 = 0$, then the value of <i>b</i> is (1) 2 (2) 4 (3) 6 (4) 8						
38. If the order of matrix A is 3×4 and the order of B is 5×3 then the order of the tra	anspose of a					
product matrix BA is (1) 4×3 (2) 4×5 (3) 5×4	$(4) 3 \times 3$					
39. If $(-1 - 2 - 4) \begin{pmatrix} 2 \\ a \end{pmatrix} = (-10)$ then the value of a is						
(1) 2 (2) -4 (3) 4 (4) -2						

www.kalvikual.com						
40. If $A = [a_{ij}]_{2 \times 2}$ and $a_{ij} = i + j$ then $A = ?$						
$(1) \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$	$(2)\begin{pmatrix}2&3\\3&4\end{pmatrix}$	$(3) \begin{pmatrix} 2 & 3 \\ 4 & 5 \end{pmatrix}$	$(4) \begin{pmatrix} 4 & 5 \\ 6 & 7 \end{pmatrix}$			
41. A = $\begin{pmatrix} 4 & -2 \\ 6 & -3 \end{pmatrix}$ the	n $A^2 = ?$					
$(1) \begin{pmatrix} 16 & 4 \\ 36 & 9 \end{pmatrix}$	$(2) \begin{pmatrix} 8 & -4 \\ 12 & -6 \end{pmatrix}$	$(3)\begin{pmatrix} -4 & 2\\ -6 & 3 \end{pmatrix}$	$(4) \begin{pmatrix} 4 & - \\ 6 & - \end{pmatrix}$	$\binom{-2}{-3}$		
42. $A = (1 - 2 3), E$	$B = \begin{pmatrix} -1 \\ 2 \\ -3 \end{pmatrix} \text{ then } A + 1$	$\mathbf{B}^T = ?$				
(1)(000)	$(2)\begin{pmatrix}0\\0\\0\end{pmatrix}$	(3) (2 4	6)	(4) not defined		
43. A × $\begin{pmatrix} 2 \\ 3 \\ 6 \end{pmatrix} = \begin{pmatrix} 11 \\ 13 \end{pmatrix}$ th	ien the order of matr	ix A is				
(1) 3×2	(2) 2 × 3	(3) 3 × 1	(4) 2 × 1			
44. $\begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$ is a (1) Unit matrix	(2) scalar matr	ix (3) square	e matrix	(4) diagonal matrix		
45. $\begin{pmatrix} x+y & x-y \\ 8 & 5 \end{pmatrix} =$ (1) 5, 3, 5	$\begin{pmatrix} 8 & 2 \\ 8 & z \end{pmatrix} \text{ then } x, y, z$ (2) 6, 2, 5	are (3) 5, –2, 5	(4) 5, -3,	5		
Unit-4: GEOMETRY						
46. In $\triangle ABC$, DE AB and AD : DC = 3 : 2. Then (area of $\triangle ABC$) : (area of $\triangle DEC$) = ? (1) 4 : 25 (2) 4 : 9 (3) 9 : 4 (4) 25 : 4						
47. If $\triangle ABC$ is an isose (1) $AB^2 = 2AC^2$	celes, right triangle w (2) $AC^2 = 2AB^2$	ith $\angle C = 90^\circ$ then (3) $BC^2 = 2AC^2$	$(4) AC^2 =$	2 <i>BC</i> ²		
48. If ΔABC ~ ΔPQR at (1) 2 : 1	nd Area of $\triangle PQR = 4$ (2) 4:1	(Area of \triangle ABC) then (3) 1:2	n AB:PQ is (4) 1:4			
49. In $\triangle ABC$, $AB = 6 cm$ (1) 4 cm	m and AD is the angl (2) 6 cm	le bisector of $\angle A$. If (3) 2 cm	BD: DC = 3 (4) 8 cm	: 2 then AC = ?		
50. In the figure, T'PT is tangent to the circle at P. If $\angle QPT'=130^{\circ}$ then						
$\angle PRQ = ?$ (1) 65°	(2) 50°	(3) 130°	(4) 40°	T'P T		

Created by: M.Palaniyappan, SGHSS, Nerkuppai, SVG Dist. Mobile: 9942904874

Page 4

	www.k	alvikual.com				
51. In \triangle ABC, DE BC meeting AB and AC at D and E. If AD = 3 cm, DB = 2 cm and AE = 2.7 cm,						
then AC=?	(1) 1.8 cm	(2) 4.5 cm	(3) 3.5 cm	(4) 5.5 cm		
52. In the figure, C is t smaller circle of ra (1) 3 cm	he centre of the conce dius 3 cm at R. If PQ (2) 4 cm	ntric circles, the chor = 8cm then the radiu (3) 5 cm	d PQ touches s of larger circle is (4) 2 cm	P C Q		
				R		
53. If the tangents PA other at an angle o	and PB from an exte f 40° from ∠POA = ?	rnal point P to circle	e with centre O are	inclined each		
(1)70°	(2) 80°	(3) 50°	(4) 60°			
[4] In the figure AB —	BD (P = 40° and ($C = 60^{\circ}$ then $\langle PAD \rangle$	- 2	A		
54. In the light e, $\frac{1}{AC} =$ (1) 30°	$\frac{1}{DC}$, $\angle B = 40$ and \angle (2) 50°	$C = 60^{\circ}$ then $2 \text{ DAD} = (3) 80^{\circ}$	(4) 40°	40° 60°		
TT If a monthing laticle 1			ware day day the sec	5 5 6		
casts a shadow 40	m long on the ground	, then the height of the	round and at the sal e tower is	me time a tower		
(1) 40m	(2) 50 m	(3) 75 m	(4) 60m			
	Unit-5: COO	RDINATE GEO	METRY			
56 If $(r, 2)$ is the mid	point of the line segm	entioining (3, 4) and	(1, y) then the value	ue of r and v		
are respectively	(1) 1, 2	(2) 2, 0	(3) 2, -2	(4) 1, -2		
57. The area of the tria	ungle formed by the po	pints $(0,0) \left(\frac{46}{4}, 0\right)$ a	nd $(0, \frac{21}{2})$ is			
(1) 6 units	(2) 2 units	(3) 3 units	(4) 4 units			
FQ. The engle between	the line $x = a$ and	$\sqrt{2} \kappa \alpha = 0$ is				
(1) 15°	(2) 30°	$(3) \ 60^{\circ}$	(4) 90°			
59. The equation of the	e straight line whose	x and y intercents a	re 2 and 3 respectiv	elv is		
$(1) \ 2x + 3y = 6$	(2) 3x + 2y = 6	(3) $2x + 3y = 0$	(4) 3x + 2y = 0			
60. The centre of a circle is at $(3, 4)$. If the circle touches the x - axis, then the radius of the circle is(1) 3 units(2) 4 units(3) 5 units(4) 7 units						
61. The area of a quadrilateral formed by the points $(-1, 1), (1, 1), (1, -1)$ and $(-1, -1)$ is.						
(1) zero	(2) 4 sq. units	(3) 25 sq. units	(4) 1 sq. unit			
62. If $(5, 7)$, $(3, a)$ and $(6, 6)$ are collinear, then the value of a is						
(1) 3	(2) 6	(3) 9	(4) 12			

	T	******** ~ a	alwi	buol o	om			
63. The vertices of a tr	iangle are <i>A</i>	A(3, -5), B(a i v i (-2, 1	Kual.C L) and C(0,	; ∪111 , −1), ti	hen the	slope of th	e altitude
through A us	$(1)\frac{1}{2}$		(2) -	-2		(3) 1		(4) -1
(4. The equation of a l	ino naccina	through the	oria	in and nor	nondia	ular to t	haling 2%	12u 7 - 0 is
(1) $2x + 3y = 0$	(2) 3	x - 2y = 0	ong	(3) y	v + 5 =	: 0	(4)	y - 5 = 0
65. The rintercent of	tha lina 2x	y = 10 i	C					
(1) 5	(2) 10	-y = 10 I	s (3) ·	-10		(4) not	defined	
		Jnit-6: 1	FRI	GONON	NETF	RY		
$\sqrt{1-\sin^2\theta}$	(1)+0		(2)	sinθ		(2) t and	0	(A) 1
$\frac{1}{\sin\theta} = 2$	(1) 0000		(2)	2		(3) <i>tun</i> i	7	(4) 1
67. If $tan\theta + cot\theta = 2$	2, then <i>tan</i>	$c^2\theta + cot^2\theta$	=?					
(1) 0 x	(2) 1 x	_	(3)	2		(4) 4		
68. If $\cot\theta = \frac{\pi}{a}$ then	$\frac{1}{\sqrt{a^2 + x^2}} = \frac{1}{\sqrt{a^2 + x^2}}$?	(2)	0			0	
(1) 0080	(2) SIN 0		(3)	COSEC O		(4) sec	Ø	
69. The shadow of a pi	llar of heigh	nt 5 <i>m</i> is 5 <i>r</i>	n. Th	e angle of	f elevat	ion is		
(1) 90°	(2) 45		(3)	60°		(4) 30°		
70. If <i>cosec A – cot A</i>	= 5, then	cosec A + a	cotA	=?		4		
(1) -5	(2) 5		(3)	5		$(4) - \frac{1}{5}$		
71. $\frac{1}{1+\sin\theta} + \frac{1}{1-\sin\theta}$	=?	(1) $2\cos^2\theta$		(2) 2 <i>sec</i> ²	$^{2}\theta$	$(3) \frac{1}{2}$	cos²θ	$(4)\frac{1}{2}sec^2\theta$
$\sin \theta - \sin^3 \theta$								
72. $\frac{\sin\theta}{\cos\theta - \cos^3\theta} = ?$		(1) $tan^2\theta$		(2) $cot^2\theta$	9	(3) tar	η <i>θ</i>	(4) $\cot \theta$
73. $sin^2 20^\circ + sin^2 70^\circ$	° — tan 45°	=?	(1)	1	(2) 0		(3) 2	(4) -1
74. A ladder leaning a	gainst a ver	tical wall, m	akes	an angle 6	60° wi	th the g	round. Th	e foot of the
ladder is $3.5 m$ aw	vay from the	e wall. The	lengt	h of the lad	dder is.		_	
(1) $3.5\sqrt{3}$ m	(2) 3.5 m	l	(3)	7 m th of the al	hadau	$(4) 3.5^{-1}$	√2 m mlong no	$\log 10\sqrt{2}$ m is
(1) 30°	(2) 60°		(3)	90°	liauow	(4) 45°	in long po	
			ENG					
UNITE /: WENSUKATION								
76. If two cylinders ha	we their rad	lii in the rat	io 4 :	5 and hei	ights ai	e in the	ratio 5:6	then the ratio

76. If two cylinders have their radii in the ratio 4:5 and heights are in the ratio 5:6 then the ratio
of their volumes is ...(1) 8:15(2) 15:8(3) 6:5(4) 4:5

	www.k	alvikual com				
77. A child reshapes a cone made up of China clay of height 24 <i>cm</i> and radius 6 <i>cm</i> into a sphere.						
The radius of the sp	onere is $(1) 2^{4}$	4 cm (2) 12 c	m (3) 6 cm	(4) 48 cm		
78. The ratio of the vol	ume of a cube to that	of a sphere which exa	ctly fits into the cube	is		
(1) π : 1	(2) 4:3	(3) $6:\pi$	(4) π : 6			
79. If a rectangle of len form a cylinder the	gth 44 <i>cm</i> and bread n the height of the cyl	th 4 <i>cm</i> is folded by b inder thus formed is	oringing their breadth	together to		
(1) 44 cm	(2) 22 cm	(3) 7 <i>cm</i>	(4) 4 <i>cm</i>			
80. A cylindrical tank h (1) 10 m	as a capacity of 6160 (2) 5 m	m^3 . The diameter of (3) 20 m	the base is 28 <i>m</i> . The (4) 15 <i>m</i>	n the depth is		
81. The volume of a con (1) three times	ne is of th (2) equal	at of cylinder (3) half	(4) one-third			
82. The total surface ar	on of homisphore of d	iamotor 7 cm is				
(1) 308 sq. cm	(2) 462 <i>sq.cm</i>	(3) 115.5 <i>sq. cm</i>	(4) 77 sq. cm			
83. If the radius of the cone is same as the height is equal to <i>a</i> , then is slant height is (1) $2\sqrt{a}$ (2) $\sqrt{2}a$ (3) $\sqrt{2}a$ (4) $2a$						
84. A sector containing an angle 120° is cut off from a circle of radius 21 <i>cm</i> is folded into a cone. The base radius of the cons is $(1)\frac{21}{2}$ <i>cm</i> (2) 7 <i>cm</i> (3) 14 <i>cm</i> (4) $\frac{120}{21}$ <i>cm</i>						
85. If the surface area	of a sphere is 100 π cr	m^2 then its diameter	is equal to			
(1) 25 cm	(2) 50 <i>cm</i>	(3) 5 <i>cm</i>	(4) 10 <i>cm</i>			
	Unit-8: STATISTICS & PROBABILITY					
86. The variance of the first 7 natural numbers, is						
(1) 5	(2) 4	(3) 16	(4) 8			
87. Variance of a set of (1) 0.14	data is 1.96. Its stand (2) 1.4	dard deviation is (3) 1.3	$(4) (1.96)^2$			
88. The range of first 1 (1) 28	0 prime numbers is (2) 22	(3) 29	(4) 27			
89. The greatest value or range is	of a collection of data (1) 44	is 72 and the least va (2) 4.4	alue is 28. Then the c (3) 0.44	coefficient of (4) 100		

	1	- 1				
WWW.Kalvikual.com 90. Standard deviation of a collection of data is $2\sqrt{2}$. If each value is multiplied by $\sqrt{2}$ then the						
standard deviation	of new data is	(1) 2 (2)	4 (3).	$2\sqrt{2}$ (4) $4\sqrt{2}$		
91. Which one of the following condition is true when the standard deviation (σ) lies between 0 and 1 (1) $\sigma > \sigma^2$ (2) $\sigma \ge \sigma^2$ (3) $\sigma < \sigma^2$ (4) $\sigma \le \sigma^2$						
92. If $P(A) = 0.34$, $P(A) = 0.34$, $P(A) = 0.34$	3) = 0.46 and A and (2) 0.80	B are mutually excl (3) 0.46	usive events ther (4) 0.12	$P(A \cup B) = ?$		
93. Which of the follow	ving values cannot be	a probability of an e	vent?			
(i) 100%	(iii) <u>9898</u>	(jiji) 0.000001	(iv) $\frac{1-\sqrt{3}}{\sqrt{3}}$			
(1) 100%	⁽¹¹⁾ 9897	(11) 0.000001	(1) 2	(A) (ii) and (iv)		
(1) (1) and (11)	(2) (11) Olliy	(3)(11)		(4) (II) allu (IV)		
94. The probability of	getting 53 Sundays in	a leap year is				
$(1)^{\frac{2}{-}}$	$(2)\frac{1}{2}$	$(3)\frac{7}{1}$	$(4) \frac{1}{52}$			
7	~ 7	53	53			
95. The probability of	drawing the number (6 from a well shuffle	ed pack of 52 care	ds is		
$(1) \frac{1}{1}$	$(2)\frac{1}{2}$	$(3) \frac{1}{1}$	$(4) \frac{1}{4}$			
13	2	26	4			
96. The probability of	drawing a red ball from	m a bag containing 4	white balls and	6 blue balls is		
(1) $\frac{4}{12}$	$(2) \frac{6}{10}$	(3) 0	(4) 1			
10	10					
97. In a family of 3 ch	ildren, the probability	y of having atleast or	ne boy is			
$(1)\frac{7}{2}$	(2) $\frac{1}{2}$	$(3)\frac{5}{2}$	$(4)\frac{3}{4}$			
8	8	8	4			
98. P(A \cup B) + P(A \cap	B) =?					
(1) $P(\overline{A}) + P(\overline{B})$	(2) P(S)	(3) <i>φ</i>	(4) $P(A) + P(A)$	(B)		
99. A fair die is thrown once. The probability of getting a perfect cube number is						
(1) 1	(2) 0	(3) $\frac{1}{2}$	$(4) \frac{1}{6}$			
100. A number is selected from 1 to 25. The probability that its prime is						
$(1) \frac{9}{-}$	$(2) \frac{9}{-}$	$(3) \frac{10}{10}$	$(4)\frac{1}{4}$			
26	25	25	3			

All the best!