MADRAS CHRISTIAN COLLEGE HR. SEC. SCHOOL, CHETPET, CHENNAI – 31

10[™] STD

MATHEMATICS

MINIMUM LEVEL STUDY

MATERIAL

2019 – 2020

~1~

1. Construct a $\triangle PQR$ in which PQ = 8 cm, $\angle R = 60^{\circ}$ and the median RG from R to PQ is 5.8 cm. Find the length of the altitude from R to PQ.

Solution :

Construction

Step 1 : Draw a line segment PQ = 8cm.

Step 2 : At P, draw PE such that $\angle QPE = 60^{\circ}$.

Step 3 : At P, draw PF such that \angle EPF = 90⁰.

Step 4 : Draw the perpendicular bisector to PQ, which intersects PF at O and PQ at G.

Step 5 : With O as centre and OP as radius draw a circle.

Step 6 : From G mark arcs of radius 5.8 cm on the circle. Mark them as R and S.

Step 7 : Join PR and RQ. Then \triangle PQR is the required triangle .

Step 8 : From R draw a line RN perpendicular to LQ. LQ meets RN at M

Step 9 : The length of the altitude is RM = 3.5 cm.

Construct a triangle △PQR such that QR = 5 cm, ∠P = 30⁰ and the altitude from P to QR is of length 4.2 cm.

Solution :

Construction

Step 1 : Draw a line segment QR = 5cm.

Step 2 : At Q, draw QE such that $\angle RQE = 30^{\circ}$.

Step 3 : At Q, draw QF such that $\angle EQF = 90^{\circ}$.

Step 4 : Draw the perpendicular bisector XY to QR, which intersects QF at O and QR at G.

Step 5 : With O as centre and OQ as radius draw a circle.

Step 6 : From G mark an arc in the line XY at M, such that GM = 4.2 cm.

Step 7 : Draw AB through M which is parallel to QR.

Step 8 : AB meets the circle at P and S.

com

Step 9 : Join QP and RP. Then Δ PQR is the required triangle.

Draw a triangle ABC of base BC = 8 cm, ∠A = 60⁰ and the bisector of ∠A meets BC at D such that BD = 6 cm.

Solution :

Construction

Step 1 : Draw a line segment BC = 8cm.

Step 2 : At B, draw BE such that $\angle CBE = 60^{\circ}$.

Step 3 : At B, draw BF such that $\angle EBF = 90^{\circ}$.

Step 4 : Draw the perpendicular bisector to BC, which intersects BF at O and BC at G.

Step 5 : With O as centre and OB as radius draw a circle.

Step 6 : From B mark an arcs of 6 cm on BC at D.

Step 7 : The perpendicular bisector intersects the circle at I. Join ID.

Step 8 : ID produced meets the circle at A. Now join AB and AC. Then \triangle ABC is the required triangle.

4. Construct a △PQR which the base PQ = 4.5 cm, ∠R = 35⁰ and the median from R to PQ is 6 cm.

Construction

MCCHSS

kalvikural.

Step 1 : Draw a line segment PQ = 4.5 cm.

Step 2 : At P, draw PE such that $\angle QPE = 35^{\circ}$.

Step 3 : At P, draw PF such that \angle EPF = 90⁰.

Step 4 : Draw the perpendicular bisector to PQ, meets PF at O and PQ at G.

Step 5 : With O as centre and OP as radius draw a circle.

Step 6 : From G mark arcs of 6 cm on the circle at RAS.

Step 7 : Join PR, RQ. Then \triangle PQR is the required \triangle .

Step 8 : Join RG, which is the median.

com

5. Construct a △PQR in which PQ = 5 cm, ∠P = 40⁰ and the median PG from P to QR is 4.4 cm. Find the length of the altitude from P to QR. Solution :

~ 3 ~

Construction

Step 1 : Draw a line segment PQ = 5 cm.

Step 2 : At P, draw PE such that $\angle QPE = 40^{\circ}$.

Step 3 : At P, draw PF such that $\angle EPF = 90^{\circ}$.

Step 4 : Draw the perpendicular bisector to PQ, meets PF at O and PQ at G.

Step 5 : With O as centre and OP as radius draw a circle.

Step 6 : From G mark arcs of 4.4 cm on the circle radius 4.4m.

Step 7 : Join PR, RQ. Then \triangle PQR is the required \triangle .

Step 8 : Length of altitude is RM = 3 cm

6. Construct a △PQR such that QR = 6.5 cm, ∠P = 60⁰ and the altitude from P to QR is of length 4.5 cm.

Construction

Step 1 : Draw a line segment QR = 6.5 cm.

Step 2 : At Q, draw QE such that $\angle RQE = 60^{\circ}$.

Step 3 : At Q, draw QF such that $\angle EQF = 90^{\circ}$.

Step 4 : Draw the perpendicular bisector XY to QR intersects QF at O & QR at G.

Step 5 : With O as centre and OQ as radius draw a circle.

Step 6 : XY intersects QR at G. On XY, from G, mark arc M such that GM = 4.5 cm.

Step 7 : Draw AB, through M which is parallel to QR.

Step 8 : AB meets the circle at P and S.

Step 9 : Join QP, RP. Then \triangle PQR is the required \triangle .

10[™] MA THS

Construct a ∆ABC such that AB = 5.5 cm, ∠C = 25⁰ and the altitude from C to AB is 4 cm.

~ 4 ~

Construction

Step 1 : Draw a line segment AB = 5.5 cm.

Step 2 : At A, draw AE such that $\angle BAE = 25^{\circ}$.

Step 3 : At A, draw AF such that $\angle EAF = 90^{\circ}$.

Step 4 : Draw the perpendicular bisector XY to AB intersects AF at O & AB at G.

Step 5 : With O as centre and OA as radius draw a circle.

Step 6 : XY intersects AB at G. On XY, from G, mark arc M such that GM = 4 cm.

Step 7 : Draw PQ, through M parallel to AB meets the circle at C and D.

Step 8 : Join AC, BC. Then \triangle ABC is the required \triangle .

8. Draw a triangle ABC of base BC = 5.6 cm, ∠A = 40° and the bisector of ∠A meets BC at D such that CD = 4 cm.

Construction

Step 1 : Draw a line segment BC = 5.6 cm. Step 2 : At B, draw BE such that $\angle CBE = 40^{\circ}$. Step 3 : At B, draw BF such that $\angle CBF = 90^{\circ}$. Step 4 : Draw the perpendicular bisector to BC meets BF at O & BC at G.

Step 5 : With O as centre and OB as radius draw a circle.

Step 6 : From B, mark an arc of 4 cm on BC at D.

Step 7 : The $\perp r$ bisector meets the circle at I & Join ID.

Step 8 : ID produced meets the circle at A. Join AB & AC.

Step 9 : Then \triangle ABC is the required triangle.

10[™] MATHS

www.kalvikural.com

9. Draw \triangle PQR such that PQ = 6.8 cm, vertical angle is 50° and the bisector of the vertical angle meets the base at D where PD = 5.2 cm.

Construction

- Step 1 : Draw a line segment PQ = 6.8 cm.
- Step 2 : At P, draw PE such that $\angle QPE = 50^{\circ}$.

Step 3 : At P, draw PF such that $\angle QPF = 90^{\circ}$.

Step 4 : Draw the perpendicular bisector to PQ meets PF at O and PQ at G.

Step 5 : With O as centre and OP as radius draw a circle.

Step 6 : From P mark an arc of 5.2 cm on PQ at D.

Step 7 : The perpendicular bisector meets the circle at R. Join PR and QR.

Step 8 : Then \triangle PQR is the required triangle.

10. Draw a circle of radius 3 cm. Take a point P on this circle and draw a tangent at P.

Solution :

Given, radius r = 3 cm

Construction

MCCHSS

(a

lvikural

Step 1 : Draw a circle with centre at O of radius 3 cm.

Step 2 : Take a point P on the circle. Join OP.

Step 3 : Draw perpendicular line TT' to OP which passes through P.

Step 4 : TT' is the required tangent.

11. Draw a tangent at any point R on the circle of radius 3.4 cm and centre at P?

Construction

Step 1 : Draw a circle with centre at P of radius 3.4 cm.

Step 2 : Take a point R on the circle and Join PR.

Step 3 : Draw perpendicular line TT' to PR which passes through R.

Step 4 : TT' is the required tangent.

12 Draw a circle of radius 4 cm. At a point L on it draw a tangent to the circle using the alternate segment.

Solution :

Given, radius=4 cm

Construction

~ 6 ~

Step 1 : With O as the centre, draw a circle of radius 4 cm.

Step 2 : Take a point L on the circle. Through L draw any chord LM.

Step 3 : Take a point M distinct from L and N on the circle, so that L, M and N are in anticlockwise direction. Join LN and NM.

Step 4 : Through L draw a tangent TT' such that $\angle TLM = \angle MNL$.

Step 5 : TT' is the required tangent.

13. Draw a circle of radius 4.5 cm. Take a point on the circle. Draw the tangent at that point using the alternate segment theorem.

con

Construction

Step 1 : With O as the centre, draw a circle of radius 4 cm.

Step 2 : Take a point L on the circle. Through L draw any chord LM.

Step 3 : Take a point M distinct from L and N on the circle, so that L, M and N are in anticlockwise direction. Join LN and NM.

Step 4 : Through L draw a tangent TT' such that $\angle TLM = \angle MNL$.

Step 5 : TT' is the required tangent.

14. Draw a circle of diameter 6 cm from a point P, which is 8 cm away from its centre. Draw the two tangents PA and PB to the circle and measure their lengths.

Solution :

Given, diameter (d) = 6 cm, we find radius = $\frac{6}{2}$ = 3 cm

 $(r) = \frac{6}{2} = 3$ cm.

Step 1 : With centre at O, draw a circle of radius 3 cm.

Step 2 : Draw a line OP of length 8 cm.

Step 3 : Draw a perpendicular bisector of OP, which cuts OP at M.

Step 4 : With M as centre and MO as radius, draw a circle which cuts previous circle at A and B.

Step5 : Join AP and BP. AP and BP are the required tangents. Thus length of the tangents are PA = PB = 7.4 cm.

15. Draw the two tangents from a point which is 10 cm away from the centre of a circle of radius 5 cm. Also, measure the lengths of the tangents.

Solution:

~ 7 ~

Construction

MCCHSS

vikural.com

Step 1 : With centre at O, draw a circle of radius 5 cm.

Step 2 : Draw a line OP = 10 cm.

Step 3 : Draw a perpendicular bisector of OP, which cuts OP at M.

Step 4 : With M as centre and MO as radius, draw a circle which cuts previous circle at A and B.

Step5 : Join AP and BP. AP and BP are the required tangents. Thus length of the tangents are PA = PB = 8.7 cm.

Construct

- ~ 8 ~
- **16.** Take a point which is 11 cm away from the centre of a circle of radius 4 cm and draw the two tangents to the circle from that point.

Construction

Step 1 : With centre at O, draw a circle of radius 4 cm.

Step 2 : Draw a line OP = 11 cm.

Step 3 : Draw a perpendicular bisector of OP, which cuts OP at M.

Step 4 : With M as centre and MO as radius, draw a circle which cuts previous circle at A and B.

Step5 : Join AP and BP. They are the required tangents AP = BP = 10.3 cm.

Verification : In the right angle triangle $\triangle OAP$,

$$AP = \sqrt{OP^2 - OA^2}$$

= $\sqrt{121 - 16} = \sqrt{105} = 10.3 \text{ cm}$

17. Draw the two tangents from a point which is 5 cm away from the centre of a circle of diameter 6 cm. Also, measure the lengths of the tangents.

Solution:

Construction

Step 1 : With centre at O, draw a circle of radius 3 cm. with centre at O.

Step 2 : Draw a line OP = 5 cm.

Step 3 : Draw a perpendicular bisector of OP, which cuts OP at M.

Step 4 : With M as centre and OM as radius, draw a circle which cuts previous circle at A and B.

Step 5 : Join AP and BP. They are the required tangents AP = BP = 4 cm.

Verification :

$$AP = \sqrt{OP^2 - OA^2}$$
$$= \sqrt{5^2 - 3^2}$$
$$= \sqrt{25 - 9}$$
$$= \sqrt{16} = 4 \text{ cm}$$

18. Draw a tangent to the circle from the point P having radius 3.6 cm, and centre at O. Point P is at a distance 7.2 cm from the centre.

Construction

Step 1 : Draw a circle of radius 3.6 cm. with centre at O.

Step 2 : Draw a line OP = 7.2 cm.

Step 3 : Draw a perpendicular bisector of OP, which cuts it M.

Step 4 : With M as centre and OM as radius, draw a circle which cuts previous circle at A and B.

Step5 : Join AP and BP. They are the required tangents AP = BP = 0.3 cm.

Verification :

$$AP = \sqrt{OP^2 - OA^2}$$

= $\sqrt{(7.2)^2 - (3.6)^2}$
= $\sqrt{51.84 - 12.96}$
= $\sqrt{38.88} = 6.3 \text{ (approx)}$

Construction of similar triangles

Example 4.10

~ 9 ~

Construct a triangle similar to a given triangle PQR with its sides equal to $\frac{3}{5}$ of the correspond-

ing sides of the triangle PQR (scale factor $\frac{3}{5} < 1$)

Solution :

Given a triangle PQR we are required to con-

struct another triangle whose sides are $\frac{3}{5}$ of the corresponding sides of the triangle PQR.

Steps of construction

1. Construct a $\triangle PQR$ with any measurement.

- Draw a ray QX making an acute angle with QR on the side opposite to vertex P.
- 3. Locate 5 (the greater of 3 and 5 in $\frac{3}{5}$) points.

 Q_1, Q_2, Q_3, Q_4 , and Q_5 on QX so that $QQ_1 = Q_1Q_2 = Q_2Q_3 = Q_3Q_4 = Q_4Q_5$

- 4. Join $Q_5 R$ and draw a line through Q_3 (the third point, 3 being smaller of 3 and 5 in $\frac{3}{5}$) parallel to $Q_5 R$ to intersect QR at R'.
- 5. Draw line through R' parallel to the line RP to intersect QP at P'. Then, $\Delta P'QR'$ is the required triangle each of whose sides is three-fifths of the corresponding sides of ΔPQR .

20. Construct a triangle similar to a given triangle PQR with its sides equal to $\frac{7}{4}$ of the corresponding sides of the triangle PQR (scale factor $\frac{7}{4} > 1$)

MCCHSS

vikural

com

10[™] MATHS

Solution :

Given a triangle PQR, we are required to construct another triangle whose sides are $\frac{7}{4}$ of the corresponding sides of the triangle PQR.

Steps of construction

1. Construct a $\triangle PQR$ with any measurement.

2. Draw a ray QX making an acute angle with QR on the side opposite to vertex P.

3. Locate 7 (the greater of 4 and 7 in ⁷/₄) points. Q₁, Q₂, Q₃, Q₄, Q₅, Q₆ and Q₇ on QX so that QQ₁= Q₁Q₂ = Q₂Q₃ = Q₃Q₄ = Q₄Q₅ = Q₅Q₆ =
4. Join Q₄ (the 4th point, 4 being smaller of

4 and 7 in $\frac{7}{4}$) to R and draw a line through

 Q_7 parallel to Q_4R , intersecting the extended line segment QR at R'.

- 5. Draw a line through R' parallel to RP intersecting the extended line segment QP at P' Then Δ P'QR' is the required triangle each of whose sides is seven-fourths of the corresponding sides of Δ PQR.
- **21.** Construct a triangle similar to a given triangle PQR with its sides equal to $\frac{2}{3}$

of the corresponding sides of the triangle

Steps of construction

~ 10 ~

- 1. Construct a $\triangle PQR$ with any measurement.
- 2. Draw a ray QX making an acute angle with QR on the side opposite to vertex P.
- 3. Locate 3 points (greater of 2 and 3 in $\frac{2}{3}$) points.

Q1, Q2, Q3 on QX so that

 $\mathbf{Q}\mathbf{Q}_1 = \mathbf{Q}_1\mathbf{Q}_2 = \mathbf{Q}_2\mathbf{Q}_3$

4. Join Q_3R and draw a line through Q_2

(3 being smaller of 2 and 3 in $\frac{2}{3}$) parallel to Q₃R to intersect QR at R'.

5. Draw line through R' parallel to the line RP intersecting the QP at P'. Then, $\Delta P'QR'$ is the required Δ .

22. Construct a triangle similar to a given

triangle LMN with its sides equal to $\frac{4}{5}$ Solution :

1. Construct a Δ LMN with any measurement.

 Draw a ray MX making an acute angle with MN on the side opposite to vertex L.

3. Locate 5 points (greater of 4 and 5 in $\frac{4}{5}$) points.

 $M_1, M_2, M_3, M_4 \& M_5$ so that $MM_1 = M_1M_2 = M_2M_3 = M_3M_4 = M_4M_5$,

- 4. Join M_5 to N and draw a line through M_4 (4 being smaller of 4 and 5 in $\frac{4}{5}$) parallel to M_5 N to intersect MN at N'.
- Draw line through N' parallel to the line LN intersecting line segment ML to L'.

Then, L'M'N' is the required Δ .

MCCHSS

10[™] MA THS

23. Construct a triangle similar to a given triangle ABC with its sides equal to $\frac{6}{5}$ of the corresponding sides of the triangle ABC (scale factor $\frac{6}{5}$).

Solution :

Steps of construction

- 1. Construct a $\triangle ABC$ with any measurement.
- 2. Draw a ray BX making an acute angle with BC on the side opposite to vertex A.
- 3. Locate 6 points (greater of 6 and 5 in $\frac{6}{5}$) points.

 B_1, B_2, \dots, B_6 on BX so that $BB_1 = B_1B_2$ = $B_2B_3 = B_3B_4 = B_3B_4 = B_4B_5 = B_5B_6$,

- 4. Join B_4 (4 being smaller of 4 and 6 in $\frac{6}{4}$) to C and draw a line through B_6 parallel to B_4C to intersecting the extended line segment BC at C'.
- 5. Draw line through C' parallel to CA intersect the extended line segment BA to A'.

Then, $\Delta A'B'C'$ is the required Δ .

24. Construct a triangle similar to a given triangle PQR with its sides equal to $\frac{7}{3}$ of the corresponding sides of the triangle PQR (scale factor $\frac{7}{3}$).

Solution :

~ 11 ~

Steps of construction

- 1. Construct a $\triangle PQR$ with any measurement.
- 2. Draw a ray PX making an acute angle with PR on the side opposite to vertex Q.
- 3. Locate 7 points (greater of 3 and 7 in $\frac{7}{3}$) points.

 P_1, P_2, \dots, P_7 on PX so that $PP_1 = P_1P_2 = P_2P_3, \dots, P_6P_7$

- 4. Join P_3R (3 being smaller of 3 and 7 in $\frac{7}{3}$) and draw a line through P_7 parallel to P_3R to intersecting the extended line segment PR at R'.
- Draw line through R' parallel to QR intersect the extended line segment PQ to Q'.

Then, $\Delta P'Q'R'$ is the required Δ .

10[™] MA THS

GRAPH

1.

Discuss the nature of solution of the following quadratic equation $X^2 + X - 12 = 0$

-											
x	-5	-4	-3	-2	-1	0	1	2	3	4	5
X ²	-25	16	9	4	1	0	1	4	9	16	25
X	-5	-4	-3	-2	-1	0	1	2	3	4	5
-12	-12	-12	-12	-12	-12	-12	-12	-12	-12	-12	-12
-12 +	-12 25	-12 26	-12 9	-12 4	-12 1	-12 0	-12 2	-12 6	-12 12	-12 20	-12 30

Solution set = { -4, 3 } Therefore the roots are real and unequal.

x	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
X ²	25	16	9	4	1	0	1	4	9	16	25	36	49
-8X	40	32	24	16	8	0	-8	-16	-24	-32	-40	-48	-56
16	16	16	16	16	16	16	16	16	16	16	16	16	16
+	81	64	49	36	25	16	17	20	26	32	41	52	65
-	0	0	0	0	0	0	-8	-16	-24	-32	-40	-48	-56
Ŷ	81	64	49	36	25	16	9	4	1	0	1	4	9

www.kalvikural.com

Solution set = {4, 4 } Therefore the roots are real and equal.

2.

Discuss the nature of solution of the following quadratic equation $X^2 - 8X + 16 = 0$

~ 14 ~

No solution Therefore the roots are unreal.

10[™] MA THS

3.

Discuss the nature of solution of the following quadratic equation $X^2 - 9X + 20 = 0$

	x	-5	-4	-3	-2	-1	0	1	2	3	4	5
	Х ²	25	16	9	4	1	0	1	4	9	16	25
_	4X	20	16	12	8	4	0	-4	-8	-12	-16	-20
	4	4	4	4	4	4	4	4	4	4	4	4
	+	49	36	25	16	9	4	5	8	13	20	29
	-	0	0	0	0	0	0	-1	-8	-12	-16	-25
	Y	49	36	25	16	9	4	1	0	1	4	9

www.kalvikural.com

Solution : { 2, 2 } Therefore the roots are real and equal

10[™] MA THS

5.

~ 16 ~

Discuss the nature of solution of the following quadratic equation $X^2 - 4X + 4 = 0$

~ 17 ~

18	\sim	18	3~
----	--------	----	----

-www.kalvikural.com

Discuss the nature of solution of the following quadratic equation $X^2 - 9 = 0$

7.

8. Discuss the nature of solution of the following quadratic equation (2x - 3)(x + 2) = 0 $(2x - 3)(x + 2) = 0 \implies 2x^2 + x - 6 = 0$

X	-5	-4	-3	-2	-1	0	1	2	3	4	5
X ² ,	25	16	9	4	1	0	1	4	9	16	25
2X ²	50	32	18	8	2	0	2	8	18	32	50
x	-5	-4	-3	-2	-1	0	1	2	3	4	5
-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6
+ -	50 -11	32 -10	18 -9	8 -8	2 -7	0 -6	3 -6	10 -6	21 -6	36 -6	
Ŷ	39	22	9	0	-5	-6	-3	4	15	30	49

www.kalvikural.com

Solution : {-2, 1.5 } Therefore the roots are real and unequal.

10[™] MA THS

x	-5	-4	-3	-2	-1	0	1	2	3	4	5
X ²	25	16	9	4	1	0	1	4	9	16	25
-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4
Ŷ	21	12	5	0	-3	-4	-3	0	5	10	21

9. Draw the graph of $Y = X^2 - 4$ and hence solve $X^2 - X - 12 = 0$

To solve $x^2 - x - 12 = 0$, subtract $x^2 - x - 12 = 0$ from $y = x^2 - 4$.

		Ļ							
					0	$= x^2 - $	x - 12		
					у	=	<i>x</i> + 8		
x	- 4	- 3	- 2	- 1	0	1	2	3	4
v	4	5	6	7	8	9	10	11	12

wccuss www.kalvikural.com

Solution : { -3, 4 }

Χ -5 -4 -3 -2 -1 0 2 3 4 5 1 Х² 25 16 9 4 1 0 1 4 9 16 25 X -5 -4 -3 -2 -1 3 4 0 1 2 5 γ 20 2 2 12 6 0 0 6 12 20 30 To solve $x^2 + 1 = 0$, subtract $x^2 + 1 = 0$ from $y = x^2 + x$. $y = x^2 + x$ $0 = x^2 - 0x + 1$ y = x - 1-2 0 4 - 4 - 3 - 1 1 2 3 5 х - 5 - 2 0 2 3 4 v -4 - 3 - 1 1 Scale x-axis -1 cm -1 unit y-axis - 1 cm - 1 unit 7 (-3, 6)(2, 6)6 5 V=x2 4 (2, 6) 3 (4, 3) (1, 2)2 (-2, 2)(3, 2) (2, 1) (-1, 0)0. X **No Solution** www.kalvikural.com 10[™] MA THS

10. Draw the graph of $Y = X^2 + X$ and hence solve $X^2 + 1 = 0$

~ 22 ~

Draw the graph of $Y = X^2 + 3x + 2$ and use it to solve $X^2 + 2x + 1 = 0$ *11*.

X
$$-5$$
 -4 -3 -2 -1 0 1 2 3 4 5 X^2 25 16 9 4 1 0 1 4 9 16 25 $3X$ -15 -12 -9 -6 -3 0 3 6 9 12 15 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 $+$ 25 16 9 4 1 0 4 10 18 28 30 -19 -16 -13 -10 -7 -4 -4 -4 -4 -4 -4 Y 6 0 -4 -6 -6 -4 0 6 14 24 26

~ 23 ~

12. Draw the graph of $Y = X^2 + 3x - 4$ and hence use it to solve $x^2 + 3x - 4 - 0$

To solve $x^2 + 3x - 4 = 0$, subtract $x^2 + 3x - 4 = 0$ from $y = x^2 + 3x - 4$.

$$y = x^{2} + 3x - 4$$
$$0 = x^{2} + 3x - 4$$
$$y = 0$$

X	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
Х ²	25	16	9	4	1	0	1	4	9	16	25	36	49
-5X	25 [.]	20	15	10	5	0	-5	-10	-15	-20	-25	-30	-35
-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6
+ -	50 -6	36 -6	24 -6	14 -6	6 -6	0 -6	1 -11	4 -16	9 -21	16 -26	25 -31	36 -36	49 -41
Ŷ	44	30	18	8	0	-6	-10	-12	-12	-10	-6	0	8

Draw the graph of $Y = X^2 - 5X - 6$ and hence solve $X^2 - 5X - 14 = 0$ *13*.

To solve $x^2 - 5x - 14 = 0$, subtract $x^2 - 5x - 14 = 0$ from $y = x^2 - 5x - 6$.

$$y = x^2 - 5x - 6$$
$$0 = x^2 - 5x - 14$$
$$y = 8$$

X	-5	-4	-3	-2	-1	0	1	2	3	4	5
<i>X</i> ²	25	16	9	4	1	0	1	4	9	16	25
2X ²	50	32	18	8	2	0	2	8	18	32	50
-3x	15	12	9	6	3	0	-3	-6	-9	-12	-15
-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
+ -	65 -5	44 -5	27 -5	14 -5	5 -5	0 -5	2 -8	8 -11	18 -14	32 -17	50 -20
Ŷ	60	39	22	9	0	-5	-6	-3	4	15	30

14. Draw the graph of $Y = 2x^2 - 3x - 5$ and hence solve $2x^2 - 4x - 6 = 0$

To solve $2x^2 - 4x - 6 = 0$, subtract it from $y = 2x^2 - 3x - 5$.

$$y = 2x^2 - 3x - 5$$
$$0 = 2x^2 - 4x - 6$$
$$y = x + 1$$

-					
	X	0	1	2	-1
ſ	у	1	2	3	0

~ 26 ~

15. Draw the graph of Y = (X - 1)(X + 3) and hence solve $X^2 - X - 6 = 0$ $Y = x^2 + 2x - 3$

X	-5	-4	-3	-2	-1	0	1	2	3	4	5
<i>X</i> ²	25	16	9	4	1	0	1	4	9	16	25
2X	-10	-8	-6	-4	-2	0	2	4	6	8	10
-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3
+	25	16	9	4	1	0	3	8	15	24	35
-	-13	-11	-9	-7	-5	-3	-3	-3	-3	-3	-3
Y	12	5	0	-3	-4	-3	0	5	12	21	32

To solve $x^2 - x - 6 = 0$, subtract it from $y = x^2 + 2x - 3$.

X	0	1	2	-1
у	3	6	9	0

-www.kalvikural.com

	~ 27 ~									
	CHAPTER – 1									
1.	If $n(A \times B) = 6$ and $A = (1, 3)$ then $n(B)$ is									
	a) 1 b) 2 c) 3 d) 6									
2.	A = { a, b, p }, B { 2, 3 } and C = { p, q, r, s } then n [(A U C) x B] is									
	a) 8 b) 20 c) 12 d) 16									
3.	If A = { 1, 2 }, B { 1, 2, 3, 4 }, C = { 5, 6 } and D = { 5, 6, 7, 8 } then state which of the following statement is true.									
	a)(AxC) ⊂(BxD) b)(BxD)⊂(AxC) c)(AxB)⊂(AxD) d)(DxA)⊂(BxA)									
4.	If there are 1024 relations from a set A = (1, 2, 3, 4, 5 } to a set B, then the number of elements in B									
	is all a share all a									
5.	a) 3 b) 2 c) 4 d) 8 The range of the relation R = $\{(x, x^2) x \text{ is a prime number lessthan } 13 \}$ is									
5.	a) $\{2, 3, 5, 7\}$ b) $\{2, 3, 5, 7, 11\}$ c) $\{4, 9, 25, 49, 121\}$ d) $\{1, 4, 9, 25, 49, 121\}$									
6.	If the ordered pairs ($a + 2, 4$) and (5, 2 $a+b$) are equal then (a, b) is									
	a) (2, -2) b) (5, 1) c) (2, 3) d) (3, -2)									
7.	Let $n(A) = m$ and $n(B) = n$ then the total number of non – empty relations that can be defined									
	from A to B is									
	a) m^n b) n^{m_i} c) $2^{mn} - 1$ d) 2^{mn}									
8.	If { (a, 8), (6, b) } represents an identity function, then the value of a and b are respectively a) (8, 6)									
9.	Let $A = \{1, 2, 3, 4\}$ and $B \{4, 8, 9, 10\}$. A function $f : A \rightarrow B$ given by									
5.	$f = \{(1, 4), (2, 8), (3, 9), (4, 10)\}$ is a									
	a) Many – one function b) Identity function									
	c) One – to – one function d) Into function									
10.	If $f(x) = 2x^2$ and $g(x) = \frac{1}{3x}$ then (f o g) is a) $\frac{3}{2x^2}$ b) $\frac{2}{3x^2}$ c) $\frac{2}{9x^2}$ d) $\frac{1}{6x^2}$									
	a) $\frac{3}{2x^2}$ b) $\frac{2}{3x^2}$ c) $\frac{2}{9x^2}$ d) $\frac{1}{6x^2}$									
11	$2x^2$ $3x^2$ $9x^2$ $6x^2$									
11.	If $f: A \rightarrow B$ is a bijective function and if $n(B) = 7$, then $n(A)$ is equal to a) 7 b) 49 c) 1 d) 14									
12.	Let f and g be two functions given by f { (0, 1), (2, 0), (3, -4), (4, 2), (5, 7) }									
	$G = \{ (0, 2), (1, 0), (2, 4), (-4, 2), (7, 0) \}$ then the range of (f o g) is									
	`a) { 0, 2, 3, 4, 5 } b) { -4, 1, 0, 2, 7 } c) { 1, 2, 3, 4, 5 } d) { 0, 1, 2 }									
13.	Let $f(x) = \sqrt{1 + x^2}$ then									
	a) $f(xy) = f(x) \cdot f(y)$ b) $f(xy) \ge f(x) \cdot f(y)$ c) $f(xy) \le f(x) \cdot f(y)$ d) None of these									
14.	If g $\{$ (1, 1), (2, 3), (3, 5), (4, 7) $\}$ is a function given by g(x) = $lpha$ (x) + eta then the values of $lpha$ and eta									
	are									
15.	a) (-1, 2) b) (2, -1) c) (-1, -2) d) (1, 2) f(x) = (x + 1) ³ - (x - 1) ³ represents a function which is									
15.	a) linear b) cubic c) reciprocal d) quadratic									
	CHAPTER – 2									
1.	Euclid's division lemma states that for positive integers a and b, there exist unique integers q and r									
	such that a = bq + r, where r must satisfy									
	a) $1 < r < b$ b) $0 < r < b$ c) $0 \le r < b$ d) $0 < r \le b$									
2.	Using Euclid's division lemma, if the cube of any positive integer is divided by 9 then the remainders are									
	a) 0, 1, 8 b) 1, 4, 8 c) 0, 1, 3 d) 1, 3, 5									
10 [™] N	MATHS MCCHSS DSG									

	~ 28 ~
3.	If the HCF of 65 and 117 is expressible in the form of 65m – 117, then the value of m is
4.	a) 4 b) 2 c) 1 d) 3 The sum of the exponents of the prime factors in the prime factorization of 1729 is a) 1 b) 2 c) 3 d) 4
5.	The least number that is divisible by all the numbers from 1 to 10 (both inclusive) is
6.	a) 2025 b) 5220 c) 5025 d) 2520 7 ^{4k} =(mod 100)
7.	a) 1 b) 2 c) 3 d) 4 Given $F_1 = 1$, $F_2 = 3$ and $F_n = F_{n-1} + F_{n-2}$ then F_5 is
8.	a) 3 b) 5 c) 8 d) 11 The first of an arithmetic progoresosion is unity and the common difference is 4. Which of the following will be a term of this A. P.
9.	a) 4551 b) 10091 c) 7881 d) 13531 If 6 items of 6 th term of an A. P. is equal to 7 times the 7 th term, then the 13 th term of the A. P. is a) 0 b) 6 c) 7 d) 13
10.	An A. P. consists of 31 terms. If its 16 th term is 'm', then the sum of all the terms of this A. P. is
	a) 16m b) 62m c) 31m d) $\frac{31}{2}$ m
11.	In an A. P., the first term is 1 and the common difference is 4. How many terms of the A.P. must be taken for their sum to be equal to 120? a) 6 b) 7 c) 8 d) 9
12.	If A = 2 ⁶⁵ and B = 2 ⁶⁴ + 2 ⁶³ + 2 ⁶² ++2 ⁰ which of the following is true? a) B is 2 ⁶⁴ more than A b) A and B are equal c) B is larger than A by 1 d) A is larger than B by 1
13.	The next term of the sequence $\frac{1}{16}$, $\frac{1}{8}$, $\frac{1}{12}$, $\frac{1}{18}$, \dots is a) $\frac{1}{12}$ b) $\frac{1}{12}$ c) $\frac{2}{12}$ d) $\frac{1}{12}$
14.	 a) 24 b) 27 c) 3 d) a Geometric Progression c) neither an Arithmetic Progression nor a Geometric Progression d) a constant sequence
15.	a) a constant sequence The value of (1 ³ + 2 ³ + 3 ³ +15 ³) – (1 + 2 + 3 ++ 15) is a) 14400 b) 14200 c) 14280 d) 14520
	CHAPTER – 3
1.	A system of three linear equations in three variables is inconsistent if their planes a) intersect only at a point b) intersect in a line
2.	a) coincides with each other The solution of the system x + y -3z = -6, -7y + 7z = 7, 3z = 9 is a) x = 1, y = 2, z = 3 b) x = -1, y = 2, z = 3 c) x = -1, y = -2, z = 3 d) x = 1, y = 2, z = 3
3.	If $(x - 6)$ is the H. C. F of $x^2 - 2x - 24$ and $x^2 - kx - 6$ then the value of k is a) 3 b) 5 c) 6 d) 8
4.	$\frac{3y-3}{y} \div \frac{7y-7}{3y^2}$ $9y \qquad 9y^2 \qquad 21y^2 - 42y + 21 \qquad 7(y^2 - 2y + 1)$
	a) $\frac{9y}{7}$ b) $\frac{9y^2}{(21y-21)}$ c) $\frac{21y^2 - 42y + 21}{3y^2}$ d) $\frac{7(y^2 - 2y + 1)}{y^2}$
10 ^{тн} М	AATHS MCCHSS DSG

-

5.
$$y^2 + \frac{1}{y^2}$$
 is not equal to
 $a) \frac{y^4 + 1}{y^2}$ $b) (y + \frac{1}{y})^2$ $c) (y - \frac{1}{y})^2 + 2$ $d) (y + \frac{1}{y})^2 - 2$
6. $\frac{x}{x^2 - 25} - \frac{a}{x^2 + 6x + 5}$
 $a) \frac{x^2 - 7x + 40}{(x - 5)(x + 5)} b) \frac{x^2 + 7x + 40}{(x - 5)(x + 5)(x + 1)}$ $c) \frac{x^2 - 7x + 40}{(x^2 - 25)(x + 1)}$ $d) \frac{x^2 + 10}{(x^2 - 25)(x + 1)}$
7. The square root of $\frac{256x^3y^5x^{50}}{(25x^3)^5x^{50}}$ is equal to
 $a) \frac{16}{5} \left[\frac{x^2x^2}{y^2}\right]$ $b) 16 \left[\frac{y^2}{2x^2}\right]$ $c) \frac{16}{5} \left[\frac{y}{2x^2}\right]$ $d) \frac{16}{5} \left[\frac{xx^2}{2}\right]$
8. Which of the following should be added to make $x^4 + 64$ a pefect square
 $a) 4x^2$ $b) 15x^2$ $(-2) x^2$ $(-2) x^2$ $d)$ Anone of these
10. The values of a ond b if $4x^4 - 24x^3 + 75x^2 + ab + b$ is a pefect square ore
 $a) 100, 120$ $b) 10, 12$ $(-12, -2)$ $d)$ None of these
10. The values of a ond b if $4x^4 - 24x^3 + 75x^2 + ab + b$ is a perfect square are
 $a) 100, 120$ $b) 10, 12$ $(-12, -2)$ $(-12, 0, 100$ $d) 12, 10$
11. If the roots of the equation $q^{3x} + p^{3x} + r^2 = 0$ are the squares of the roots of the equation
 $q^{3x} + px + r = 0$, then p, r are in
 $a) A, P$ $b) G, P$ $(-2)Both A, P and G, P$ d) None of these
12. Graph of a linear polynomial is a
 $a) 0$ $b) 1$ $(-2) or 1$ $d) 2$
13. The number of points of intersection of the quadratic polynomial $x^2 + 4x + 4$ with the $X - axis$ is
 $a) 0$ $b) 13 x^2$ $(-3x4)$ $d) 4x^3$
15. If A is a 2 x 3 matrix and B is a 3 x 4 matrix, how many columns does AB have
 $a) 3 = b) 4$ (-2) (-2) $d) (\frac{2}{2}$ $\frac{1}{2}$
19. Which of the following can be calculated from the given matrix
10. Transpose of a column matrix is
 $a) (1) and (ii) only b) (ii) (and (iii) only c) (iii) ad (iv) only d) all of these
10. If $A = (\frac{1}{3}, \frac{2}{4}, B) = (\frac{1}{2}, \frac{2}{5}, G)$ $(i) A^2$ $(ii) B^2$ $(iii) AB$ $(w) BA$
 $A = (\frac{1}{3}, \frac{2}{4}, B) = (\frac{1}{2}, \frac{2}{3}, B)$ $(i) A^2$ $(ii) B = (\frac{1}{2}, \frac{2}{3}, B)$
 $a) (i) and (ii) only b) (ii) (and (iii) only c) (iii) and (iv) only d) all of these$
20. If $A = (\frac{1}{3}, \frac{2}{3}, B) = (\frac{1}$$

		~ 31 ~	
	c) 8 cm d) 4cm		
15.	In figure if PR is tangent to the is the centre of the circle, then a		P R Qo
	a) 120° b) 100°		
	c) 110 ⁰ d) 90 ⁰		0
		,	<u> </u>
		<u>CHAPTER – 5</u>	
1.	The area of triangle formed by a		′ 5, 0) is
	a) 0 sq. units b) 25 sq.	, ,	d) none of these
2.	A man walks near a wall, such t		and the wall is 10 units. Consider
	the wall to be the Y axis. The po	•	
2	a) $x = 10$ b) $y = 10$	c) x = 0	d) y = 0
3.	The straight line given by the eq		
	a) parallel to X axis	b) parallel to Y axi	
л	c) passing through the origin f(5,7) (2, p) and (6, 6) are		h the point (0, 11)
4.	If (5,7), (3, p) and (6, 6) are a) 3 b) 6	c) 9	d) 12
5.	The point of intersection of 3x –	- / -	u) 12
J.	a) (5, 3) b) (2, 4)		d) (4, 4)
	, , , , , , , , , , , , , , , , , , , ,	1	
6.	The slope of the line joining (12	$(4, a)$ is – . The value of $\frac{8}{8}$	ʻa' is
_	a) 1 b) 4	c) -5	d) 2
7.	The slope of the line which is pe	rpendicular to line joining the p	ooints (0, 0) and (-8, 8) is
	a) -1 b) 1	c) $\frac{1}{3}$	d) -8
8.	The slope of the line PQ is $\frac{1}{\sqrt{3}}$ th		isector of PQ is
	a) $\sqrt{3}$ b) - $\sqrt{3}$	c) $\frac{1}{\sqrt{3}}$	d) 0
9.	2	e ordinate is 8 and B is a point o	on the X axis whose abscissae is 5 then
	the equation of the line AB is $a_{1}^{2} e_{2}^{2} e_{3}^{2} = 40$	(-40)	d) F
10.	a) 8x + 5y = 40 b) 8x - 5y The equation of a line passing t	r = 40 c) x = 8 hrough the origin and perpendi	d) $y = 5$ uclar to the line $7x - 3y + 4 = 0$ is
10.			d) $7x - 3y = 0$
11.	Consider four straight lines	, , , , , , , , , , , , , , , , , , ,	u/// 3y=0
	(i) $l_1 : 3y = 4x + 5$ (ii) $l_2 : 4y$	$= 3x - 1$ (iii) $l_2 : 4y + 3x =$	7 (iv) $l_4: 4x + 3y = 2$
	<i>Which of the following stateme</i>		
		b) $l_1 \& l_4$ are parallel	
	c) $l_2 \& l_4$ are perpendicular		
12.	A straight line has equation 8y =		ng is true
	a) The slope is 0.5 and the y inte	ercept is 2.6 b) The slop	pe is 5 and the y intercept is 1.6
	c) The slope is 0.5 and the y inte	ercept is 1.6 d) The slop	pe is 5 and the y intercept is 2.6
13.	When proving that a quadrilate		
	, .	b) Two parallel and two n	•
	c) Opposite sides are parallel		-
14.	When proving that a quadrilate	ral is a parallelogram by using .	slopes you must find
10 TH M	NATHS	MCCHSS	DSG

-www.kalvikural.com-----

		~ 32 ~							
	a) The slopes of four sides c) The lengths of all sides	b) The slopes of two pair d) Both the lengths and s							
15.	(2, 1) is the point of intersection a) x − y − 3 = 0; 3x − y − 7 = 0 c) 3x + y = 3; x + y = 7	b) x + y = 3; 3x + y = 7	7 = 0						
	c/ 3x + y = 3, x + y = 7	u x + 3y = 3 = 0, x = y = 7							
	. 1	<u> CHAPTER – 6</u>							
1.	The value of $\sin^2\theta + \frac{1}{1 + \tan^2\theta}$ is e	equal to $a_{1}^{2} a_{2}^{2} a_{3}^{2}$	d 0						
2.	a) $tan^2\theta$ b) 1 $tan\theta cosec^2\theta$ - $tan\theta$ is equal to	c) cot $^2 heta$	d) 0						
	a) sec θ b) cot ² θ	c) sin $ heta$	d) cot $ heta$						
З.	If (sin α + cosec α) ² + (cos α + sec	$(\alpha)^2 = k + tan^2 \alpha + cot^2 \alpha$, then	n the value of k is equal to						
	a) 9 b) 7	c) 5	d) 3						
4.	If $\sin\theta + \cos\theta = a$ and $\sec\theta + \cos\theta$								
	a) 2a b) 3a	c) 0	d) 2ab						
5.	If 5x = sec θ and $\frac{5}{x}$ = tan θ , then x^2	$\frac{1}{x^2}$ - $\frac{1}{x^2}$ is equal to							
	a) 25 b) $\frac{1}{25}$	c) 5	d) 1						
6.	If sin $\theta = \cos \theta$, then 2 $\tan^2 \theta + \sin^2 \theta$	2 $ heta$ - 1 is equal to							
		c) $\frac{2}{2}$	$d)\frac{-2}{3}$						
	Δ Δ	c/ 3	3						
7.	If $x = a \tan \theta$ and $y = b \sec \theta$ then								
	a) $\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$ b) $\frac{x^2}{a^2} - \frac{y^2}{b^2}$	$= 1$ $c)\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	$d)\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 0$						
8.	$(1 + \tan \theta + \sec \theta)(1 + \cot \theta - \cos \theta)$	sec $ heta$) is equal to							
	a) 0 b) 1		d) -1						
9.	$a \cot \theta + b \csc \theta = p$ and $b \cot \theta$		-						
_	a) $a^2 - b^2$ b) $b^2 - a^2$	c) $a^2 + b^2$	d) $b-a$						
10.	If the ratio of the height of a to elevation of the sun has measure	ower and the length of its	shadow is $\sqrt{3}$: 1, then the angle of						
	a) 45° b) 30°	с) 90 ⁰	d) 60 ⁰						
11.	The electric pole subtends an ang		-						
		e depression of the foot of th	he tower is 60° . The height of the tower						
	(in meters) is equal to	h	h						
	a) $\sqrt{3}b$ b) $\frac{b}{3}$	c) $\frac{b}{2}$	d) $\frac{b}{\sqrt{3}}$						
12.	5	nadow is x meters shorter	when the sun's altitude is 45° then						
	when it has been 30° , then 'x' is e								
	a) 41.92 m b) 43.92 m	c) 43m	d) 45.6 m						
13.	The angle of depression of the	e top and bottom of 20	m tall building from the top of a						
	-		eight of the multistoried building and						
	distance between two buildings (in meters) is	_						
	a) 20, $10\sqrt{3}$ b) 30, $5\sqrt{3}$	c) 20, 10	d) 30, 10√3						
14.	Two persons are standing 'x' meter								
			ne line joining their feet an observer						
		their tops to be compleme	ntary, then the height of the shorter						
	person (in meters) is								
10 ^{1#} N	NATHS	<i>MCCHSS</i> A-kalvikural-G	DSG						
	·	r.kaivikufai. G	÷•••••••••••••••••••••••••••••••••••••						

г ¦				
			~ 33 ~	
	$a)\sqrt{2}x$	b) $\frac{x}{2\sqrt{2}}$	$c)\frac{x}{\sqrt{2}}$	d)2x
15.	-	- v -	V Z	
15.			eight of location of the c	,
	a) $1-tan\beta$	b) $\frac{1+tan\beta}{1+tan\beta}$	c) h tan (45° - eta)	d) none of these
	1			
	The sum of suffer		<u>HAPTER – 7</u>	and have discussed as 10 and is
1.	a) 60π cm ²	te area of a right circul b) 68 π cm ²	ar cone of neight 15cm (c) 120 π cm ²	and base diameter 16 cm is d) 136 π cm 2
2.	•	•	,	joined together along their bases,
	•	nce area of this new sol		
	-	•	c) $3\pi r^2$ sq. units	d) $8\pi r^2$ sq. units
З.	The height of a ri	ght circular cone whos	e radius is 5cm and slan	t height is 13cm will be
	a) 12 cm	b) 10 cm	c) 13 cm	d) 5 cm
4.			,	ping the same height, then the ratio
 		=	ned to the volume of orig	
 _	a) 1 : 2	b) 1 : 4	c) 1 : 6	d) 1 : 8
5.	The total surface	area of a cylinder who	se radius is $\frac{1}{3}$ of its heigh	nt is
1 1 1	a) $\frac{9\pi h^2}{m}$ sa. units	b) 24 π h ² sa. units	c) $\frac{8\pi h^2}{9}$ sq. units	d) $\frac{56\pi h^2}{m}$ sa. units
6.	0		,	is 14cm and the width is 4cm. If its
0.		he volume of the mate		is 14cm and the wath is 4cm. If its
	a) 5600 π cm ³		c) 56 π cm ³	d) 3600 π cm ³
7.	,	,	,	ibled then the volume is
	a) made 6 times		c) made 12 times	d) unchanged
8.	The total surface	area of a hemi – spher	e is how much times the	e square of its radius
	a) π	b) 4π	c) 3π	d) 2π
9.			ted and cast into a sha	ape of a solid cone of same radius.
	The height of the a) 3x cm	b) x cm	c) 4x cm	d) 2x cm
10.	•	•	,	adii of its ends as 8cm and 20cm.
		of the frustum is	, <u>,</u>	,
1 1 1	a) 3328 π cm ³		c) 3240 π cm 3	d) 3340 π cm ³
11.			on has the shape of the	-
	a) a cylinder and	•	b) a hemisphere an	
12.	c) a sphere and a			e and a hemisphere cal balls each of radius r₂ units.
 	Then r_1 : r_2 is			
	a) 2 : 1	b) 1 : 2	c) 4 : 1	d) 1 : 4
13.	•	•	,	rom a cylindrical log of wood of base
	radius 1 cm and l	-		
	a) $\frac{4}{3}\pi$	b) $\frac{10}{2}\pi$	c) 5 π	d) $\frac{20}{2}\pi$
14.	ہ The height and ro	3		are h_1 units and r_1 units respectively.
			f the smaller base r ₂ unit	
	If $h_1: h_2 = 1: 2$ th			
	a) 1 : 3	b) 1 : 2	c) 2 : 1	d) 3 : 1
; 				
10 TH]	NA THS		<i>mcchss</i> Alvikural.ce	DSG
L		₩₩₩. <mark>K</mark> ä	a lvik ural.ce	m

			~ 34 ~	
15.	The ratio of the vo height is	olumes of a cylinder, o	a cone and a sphere, if	f each has the same diameter and same
 	a) 1 : 2 : 3	b) 2 : 1 : 3	c) 1 : 3 : 2	d) 3 : 1 : 2
1.	Which of the follow	wing is not a measur	<u>CHAPTER – 8</u>	
1.	a) Range	-	ation c) Arithmetic me	ean d) Variance
2.	· -	lata 8,8,8,8,8,8,		
	a) 0	b) 1	c) 8	d) 3
3.		iations of the data fr	•	- , -
	-	b) always negati		d) non – zero integer
4.	The mean of 100 c deviations is	observations is 40 and	d their standard devia	tion is 3. The sum of squares of all
1 1 1	a) 40000	b) 160900	c) 160000	d) 30000
5.		0 natural numbers is	_	
	a) 32.25	b) 44.25	-/	d) 30
6.				led by 5 then the new variance is
7.	a) 3	b) 15 viation of x, y, z, is (n)	c) 5	d) 225
7.	a) 3p + 5	b) 3p	c) $p + 5$	viation 3x + 5, 3y + 5, 3z + 5 is d) 9p + 15
8.	, ,			7.5% then the standard deviation is
0.	a) 3.5	b) 3	c) 4.5	d) 2.5
9.	Which of the follo	,	-,	2) _ 2
		-	c) P(φ) = 0	d) $P(A) + P(\bar{A}) = 1$
10.	The probability a r marbles is	red marble selected a	t random from a jar c	onotaining 'p' red, 'q' blue and 'r' green
	a) $\frac{q}{n+q+r}$	b) $\frac{p}{p+q+r}$	c) $\frac{p+q}{p+q+r}$	d) $\frac{p+r}{p+q+r}$
11	$p \cdot q \cdot r$			
11.	number chosen is	less than 7 is		hat the digit at units place of the page
	a) $\frac{3}{10}$	$b)\frac{7}{10}$	$c)\frac{3}{9}$	$d)\frac{7}{9}$
1				bability of not getting the job is $\frac{2}{3}$ then
12.		getting a job jor a p	$\frac{1}{3}$	$\frac{1}{3}$
	the value of 'x' is	h) 1	-1-2	
13.	a) 2 Kamalam went to	b) 1 play a lucky draw con	C) 3	d) 1.5 e lucky draw were sold. If the probability
1 1 <i>.</i> .		1	-	
i	of Kamalam winni	ng is —, then the num 9	ber of tickets bought	by Kamalam is
	a) 5	b) 10	c) 15	d) 20
14.	the letter chose pr	=	e English alphabets { a	<i>ı, b, c,, z}, then the probability that</i>
	a) $\frac{12}{13}$	$b)\frac{1}{13}$	$c)\frac{23}{26}$	$d)\frac{3}{26}$
15.	A purse contains 1	0 notes of ₹2000, 1.	5 notes ₹500 and 25 r	´26 notes of ₹200. One note is drawn at 00 note or ₹200 note ?
	$a)\frac{1}{5}$		$\frac{2}{2}$	$\frac{4}{2}$
 	" ₅	$b)\frac{3}{10}$	⁽⁾ 3	<i>a</i> ⁷ 5
10"1	MATHS		MUCHSS	DSG
		·····	ai v+n u+di.(

~ 35 ~														
ANSWERS														
<u>CHAPTER – 1</u>														
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
С	С	а	b	С	а	С	а	С	С	а	d	С	b	d
<u>CHAPTER – 2</u>														
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
С	а	b	С	d	а	d	С	а	С	С	d	b	b	С
						С	HAPTE	R – 3						
		1	2	3	4	5	6	7	8	9	10)		
		d	а	b	а	b		d		С	С			
		11								_				
		b	а	b	С	b	b	d	b	b	а			
						C	HAPTE	R – 4						
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
С	b	d	а	d	а	b	С	а	d	b	b	b	d	а
							HAPTE						1	1
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
b	а	b	С	С	d	b	b	а	С	С	а	b	а	b
						<u>C</u>	HAPTE	<u>R – 6</u>						
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
b	d	b	а	b	b	а	С	b	d	b	b	d	b	а
						<u>c</u>	HAPTE	<u>R – 7</u>						
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
d	а	а	b	С	b	b	С	С	а	d	а	а	b	d
<u>CHAPTER –8</u>														
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
С	а	С	b	С	d	b	а	а	b	b	b	С	С	d
<i>10[™] MATHS MCCHSS D2</i>														
						-Kg	1-V-H		41-6	ын				

~ 36 ~ CHAPTER - 11. If $A = \{1, 3, 5\}$ and $B = \{2, 3\}$ then find (i) $A \times B$ and (ii) $B \times A$ Answer: Given that A = { 1, 3, 5 } and B = { 2, 3 } $\begin{array}{ll} A \times B = \ \{ \ 1, \ 3, \ 5 \ \} \times \{ \ 2, \ 3 \ \} &= \ \{ \ (1, 2), (1, 3), (3, 2), (3, 3), (5, 2), (5, 3), \} \\ B \times A = \ \{ \ 2, \ 3 \ \} \times (1, \ 3, \ 5 \ \} &= \ \{ \ (2, 1), (2, 3), (2, 5), (3, 1), (3, 3), (3, 5), \} \end{array}$ (i) (ii) If $A \times B = \{(3, 2), (3, 4), (5, 2), (5, 4)\}$ then find A and B. 2. Answer: We have A = { set of all first coordinates of the elements of A x B } = { 3, 5 } $B = \{$ Set of all second coordinates of the elements of $A \times B \} = \{2, 4\}$ З. Let $A = \{x \in N \mid 1 < x < 4\}$, $B = \{x \in W \mid 0 \le x < 2\}$ and $C = \{x \in N \mid x < 3\}$ then verify that (i) Ax(BUC) = (AxB)U(AxC) (ii) $Ax(B \cap C) = (AxB) \cap (AxC)$ Answer: Given : A = { 2, 3 }, B = { 0, 1 } and C = { 1, 2 } Ax(BUC) = (AxB)U(AxC)(i) LHS: Ax(BUC) (BUC)={0,1}U{1,2} $= \{0, 1, 2\}$ $A \times (B \cup C) = \{2, 3\} \times \{0, 1, 2\} = \{(2, 0), (2, 1), (2, 2), (3, 0), (3, 1), (3, 2)\} - \dots - (1)$ RHS: $(A \times B) U (A \times C)$ $(A \times B)$ $= \{2, 3\} \times \{0, 1\} = \{(2,0), (2,1), (3,0), (3,1)\}$ ={ (2,1),(2,2),(3,1),(3,2) } $(A \times C)$ = { 2, 3) x { 1, 2 } $(A \times B) U (A \times C)$ $\{(2,0),(2,1),(3,0),(3,1)\} \cup \{(2,1),(2,2),(3,1),(3,2)\}$ = $\{(2,0),(2,1),(2,2),(3,0),(3,1),(3,2)\}$ ------(2) From (1) and (2) **LHS = RHS** that is Ax(BUC) = (AxB)U(AxC)(ii) $A \times (B \cap C) = (A \times B) \cap (A \times C)$ LHS: $A \times (B \cap C)$ $(B \cap C)$ $= \{0,1\} \cap \{1,2\} = \{1\}$ $A x (B \cap C) = \{2, 3\} x \{1\}$ $= \{ (2,1), (3,1) \}$ ------(1) RHS: $(A \times B) \cap (A \times C)$ $(A \times B)$ ={2,3}x{0,1} $= \{ (2,0), (2,1), (3,0), (3,1) \}$ $= \{2, 3\} \times \{1, 2\} \qquad = \{(2, 1), (2, 2), (3, 1), (3, 2)\}$ $(A \times C)$ $(A \times B) \cap (A \times C)$ = $\{(2,0),(2,1),(3,0),(3,1)\} \times \{(2,1),(2,2),(3,1),(3,2)\}$ $\{(2,1),(3,1)\}$ ------ (2) = From (1) and (2) **LHS = RHS** that is $A \times (B \cap C) = (A \times B) \cap (A \times C)$ 4. Find A x B, A x A, B x A and B x B (i) A = { 2, -2, 3 } and B { 1, -4 } (ii) $A = B = \{p, q\}$ (iii) $A = \{m, n\}$ and $B = \phi$ Answer: (i) If A = { 2, -2, 3) and B (1, -4) $A \times B = \{2, -2, 3\} \times \{1, -4\}$ $= \{ (2,1), (2,-4), (-2,1), (-2,-4), (3,1), (3,-4) \}$ $=\{(2,2),(2,-2),(2,3),(-2,2),(-2,-2),(-2,3),(3,2),$ $A \times A = \{2, -2, 3\} \times \{2, -2, 3\}$ (3,-2),(3,3)10[™] MA THS MCCHSS DSG vikural.com-----

		~ 37 ~
	$B \times A = \{1, -4\} \times \{2, -2, 3\}$	= { (1,2),(1,-2),(1,3),(-4,2),(-4,-2),(-4,3 }
	$B \times B = \{1, -4\} \times \{1, -4\}$	$= \{ (1,1), (1,-4), (-4,1), (-4,-4) \}$
(i	i) If $A = \{p, q\}$ and $B = \{p, q\}$	
($A \times B = \{p, q\} \times \{p, q\}$	$= \{ (p, p), (p, q), (q, p), (q, q) \}$
	$A \times A = \{p, q\} \times \{p, q\}$	$= \{ (p, p), (p, q), (q, p), (q, q) \}$
	$B \times A = \{p, q\} \times \{p, q\}$	$= \{ (p, p), (p, q), (q, p), (q, q) \}$
	$B \times B = \{p, q\} \times \{p, q\}$	$= \{ (p, p), (p, q), (q, p), (q, q) \}$
(;	iii) $A = \{m, n\}$ and $B = \{\}$ or ϕ	
(7)	$A = \{m, n\} x \{\}$	= { } or φ
	$A \times B = \{m, n\} \times \{r\}$ $A \times A = \{m, n\} \times \{m, n\}$	
	$BxA = \{ \}x\{m,n\}$	$= \{ \} \text{ or } \phi$
	$B \times A = \{ \} \times \{ \}$ $B \times B = \{ \} \times \{ \}$	$= \{ \} \text{ or } \phi$
		- {
	et A = { 1, 2, 3 } and B = { x x is a pri inswer:	me number less than 10 }. Find A x B and B x A
	Fiven $A = \{1, 2, 3\}$ and $B = \{2, 3, 5, 7\}$	
		2),(1,3),(1,5),(1,7),(2,2),(2,3),(2,5),(2,7),(3,2),(3,3),(3,5),(3,7) }
(ii	i) B x A = { 2, 3, 5, 7 } x { 1, 2, 3 } ={(2,1	!),(2,2),(2,3),(3,1),(3,2),(3,3),(5,1),(5,2),(5,3),(7,1),(7,2),(6,3) }
6. If	$f B x A = \{ (-2, 3), (-2, 4), (0, 3), (0, 3) \}$	4), (3,3), (3, 4)} find A and B
A	nswer:	
G), (0, 3), (0, 4), (3,3), (3, 4)}
	A = { 3, 4 } and B = { -2,	0, 3 }
7. If	f A = { 5, 6 }, B = { 4, 5, 6 }, C = { 5, 6, 7	'}. Show that $A \times A = (B \times B) \cap (C \times C)$.
A	nswer:	
	iiven : A = { 5, 6 }, B = { 4, 5, 6 } and C	• • • •
R	HS: $A \times A = \{5, 6\} \times \{5, 6\} = \{(5, 5)\}$,(5, 6),(6, 5),(6, 6)
LI	$HS: (B X B) \cap (C x C)$	
-		(4,5),(4,6),(5,4),(5,5),(5,6),(6,4),(6,5), (6,6) }
-		5,6),(5,7),(6,5),(6,6),(6,7),(7,5),(7,6),(7,7) }
•		(5, 6),(6, 5),(6, 6)
Fi	rom (1) and (2) LHS = RHS that i	
	A x A = (B x B) /	γ (CxC).
8. G	Riven A = { 1, 2, 3 }, B = { 2, 3, 5 }, C =	= { 3, 4 } and D { 1, 3, 5 }, check if
-	$A \cap C$) x ($B \cap D$) = ($A \times B$) \cap ($C \times D$ Answer:) is true?
	iiven : A = { 1, 2, 3 }, B = { 2, 3, 5 }, C = HS = (A ∩ C) x (B ∩ D)	= { 3, 4 } and D { 1, 3, 5 },
		$(B \cap D\} = \{2, 3, 5\} \cap \{1, 3, 5\} = \{3, 5\}$
		$= \{(3, 3), (3, 5)\}$ (1)
	$HS = (A \times B) \cap (C \times D)$	
		(1,3),(1,5),(2,2),(2,3),(2,5), (3,2),(3,3),(3,5)}
	$[x D = \{3, 4\} x \{1, 3, 5\} = \{(3, 1), (1, 2), (2, 3), (3, 2),$	
		· ·
10 [™] MA 1		MCCHSS
	www.k	alvikural.com

DSG

~ 38 ~ $(A \times B) \cap (C \times D)$ $= \{ (3, 3), (3, 5) \}$ ------ (2) From (1) and (2) LHS = RHS that is $(A \cap C) \times (B \cap D) = (A \times B) \cap (C \times D)$ Let $A = \{x \in W \mid x < 2\}$, $B = \{x \in N \mid 1 < x \le 4\}$ and $C = \{3, 5\}$. Verify that 9. Ax(BUC) = (AxB)U(AxC)(ii) $A \times (B \cap C) = (A \times B) \cap (A \times C)$ (i) $(A \cup B) \times C = (A \times C) \cup (B \times C)$ (iii) Answer: Given : A = { 0, 1 }, B = { 2, 3, 4 } and C = { 3, 5 } Ax(BUC) = (AxB)U(AxC)(i) LHS: $A \times (B \cup C)$ $(BUC) = \{2, 3, 4\} \cup \{3, 5\} = \{2, 3, 4, 5\}$ $A \times (B \cup C) = \{0, 1\} \times \{2, 3, 4, 5\} = \{(0, 2), (0, 3), (0, 4), (0, 5), (1, 2), (1, 3), (1, 4), (1, 5)\}$ RHS: $(A \times B) \cup (A \times C)$ $(A \times B)$ $= \{0, 1\} \times \{2, 3, 4\} = \{(0,2), (0,3), (0,4), (1,2), (1,3), (1,4)\}$ $(A \times C) = \{0, 1\} \times \{3, 5\} = \{(0,3), (0,5), (1,3), (1,5)\}$ $(A \times B) \cup (A \times C) = \{(0,2), (0,3), (0,4), (0,5), (1,2), (1,3), (1,4), (1,5)\}$ ------(2) From (1) and (2) LHS = RHS that is Ax(BUC) = (AxB)U(AxC)(ii) $Ax(B \cap C) = (AxB) \cap (AxC)$ LHS: $A \times (B \cap C)$ $(B \cap C) = \{2, 3, 4\} \cap \{3, 5\} = \{3\}$ $A \times (B \cap C) = \{0, 1\} \times \{3\} = \{(0, 3), (1, 3)\}$ -----(1) RHS: $(A \times B) \cap (A \times C)$ $(A \times B) = \{0, 1\} \times \{2, 3, 4\} = \{(0, 2), (0, 3), (0, 4), (1, 2), (1, 3), (1, 4)\}$ $(A \times C)$ $= \{ 0, 1 \} \times \{ 3, 5 \} = \{ (0,3), (0,5), (1,3), (1,5) \}$ $(A \times B) \cap (A \times C) = \{(0, 3), (1, 3)\}$ From (1) and (2) LHS = RHS that is $Ax(B \cap C) = (AxB) \cap (AxC)$ (iii) $(A \cup B) \times C = (A \times C) \cup (B \times C)$ LHS: (AUB) x C $(AUB) = \{0,1\} \cup \{2,3,4\} = \{0,1,2,3,4\}$ $(A \cup B) \times C = \{0, 1, 2, 3, 4\} \times \{3, 5\} = \{(0,3), (0,5), (1,3), (1,5), (2,3), (2,5), (3,3), (3,5), (4,3), (3,5), (4,3), (3,5), (4,3), (3,5), (4,3), (3,5), (4,3), (3,5), (4,3), (3,5), (3,5), (4,3), (3,5),$ (4,5)}----- (1) $RHS: (A \times C) \cup (B \times C)$ $= \{ 0, 1 \} x \{ 3, 5 \} = \{ (0,3), (0,5), (1,3), (1,5) \}$ $(A \times C)$ $(B \times C)$ $= \{2, 3, 4\} \times \{3, 5\} = \{(2,3), (2,5), (3,3), (3,5), (4,3), (4,5)\}$ $(A \times C) \cup (B \times C) = \{(0,3), (0,5), (1,3), (1,5), (2,3), (2,5), (3,3), (3,5), (4,3), (4,5)\}$ ------(2) From (1) and (2) LHS = RHS that is $(A \cup B) \times C = (A \times C) \cup (B \times C)$ Let A = The set of all natural numbers less than 8, B = The set of all prime numbers less than 8 and 10. *C* = The set of even prime number. Verify that 10[™] MA THS MCCHSS DSG kalvikural.com-----

~ 39 ~ (ii) A x (B - C) = (A x B) - (A x C) $(i) (A \cap B) \times C = (A \times C) \cap (B \times C)$ Answer: Given : A = { 1, 2, 3, 4, 5, 6, 7 }, B = { 2, 3, 5, 7 } and C = { 2, } (i) $(A \cap B) \times C = (A \times C) \cap (B \times C)$ LHS: $(A \cap B) \times C$ $A \cap B$ $= \{1, 2, 3, 4, 5, 6, 7\} \cap \{2, 3, 5, 7\} = \{2, 3, 5, 7\}$ $(A \cap B) \times C = \{2, 3, 5, 7\} \times \{2\} = \{(2,2), (3,2), (5,2), (7,2)\}$ ------(1) RHS: $(A \times C) \cap (B \times C)$ $A \times C = \{ 1, 2, 3, 4, 5, 6, 7 \} \times \{ 2, \} = \{ (1,2), (2,2), (3,2), (4,2), (5,2), (6,2), (7,2) \}$ $B \times C = \{2, 3, 5, 7\} \times \{2\}$ $= \{ (2,2), (3,2), (5,2), (7,2) \}$ $= \{ (2,2), (3,2), (5,2), (7,2) \} ------ (2)$ $(A \times C) \cap (B \times C)$ From (1) and (2) LHS = RHS that is $(A \cap B) \times C = (A \times C) \cap (B \times C)$ (ii) Ax(B-C) = (AxB) - (AxC)LHS: $A \times (B - C)$ (B-C) $= \{2, 3, 5, 7\} - \{2\} = \{3, 5, 7\}$ $A x (B-C) = \{1, 2, 3, 4, 5, 6, 7\} x \{3, 5, 7\}$ $=\{(1,3),(2,3),(3,3),(4,3),(5,3),(6,3),(7,3),(1,5),(2,5),(3,5),(4,5),(5,5),(6$ (7,5),(1,7),(2,7), (3,7),(4,7),(5,7),(6,7),(7,7)} ------(1) $RHS: (A \times B) - (A \times C)$ $(A \times B)$ $= \{ \{ 1, 2, 3, 4, 5, 6, 7 \} \times \{ 2, 3, 5, 7 \}$ $=\{(1,2),(1,3),(1,5),(1,7),(2,2),(2,3),(2,5),(2,7),(3,2),(3,3),(3,5),(3,7),(4,2),(4,3),(4$ (4,5),(4,7),(5,2),(5,3),(5,5),(5,7),(6,2),(6,3),(6,5),(6,7),(7,2),(7,3),(7,5),(7,7)} $= \{ 1, 2, 3, 4, 5, 6, 7 \} \times \{ 2 \}$ $(A \times C)$ $= \{ (1,2), (2,2), (3,2), (4,2), (5,2), (6,2), (7,2) \}$ $(AxB) - (AxC) = \{(1,3), (2,3), (3,3), (4,3), (5,3), (6,3), (7,3), (1,5), (2,5), (3,5), (4,5$ (5,5),(6,5),(7,5),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7),(7,7) ------(2) LHS = RHS that is From (1) and (2) Ax(B-C) = (AxB) - (AxC)11. Let $A = \{1, 2, 3, 4\}$ and $B = \{2, 5, 8, 11, 14\}$ be two sets. Let $f : A \rightarrow B$ be a function give by f(x) = 3x - 1. Resresent this function by arrow diagram in a table form (i) (ii) as a set of ordered pairs (iv) in a garaphical form (iii) Answer: Given: A = { 1, 2, 3, 4 }, B = { 2, 5, 8, 11, 14 } and f(x) = 3x - 1 f(1) = 3(1) - 1= 3 – 1 = 2 f(2) = 3(2) - 1= 6 – 1 = 5 f(3) = 3(3) - 1= 9 – 1 = 8 = 12 - 1 f(4) = 3(4) - 1= 11 10[™] MA THS MCCHSS <u>www.kalvikural.com</u>

DSG

10[™] MA THS

www.kalvikural.con

~ 41 ~ Let f be function $f: N \rightarrow N$ be defined by $f(x) 3x + 2, x \in N$ 15. (i) Find the images of 1, 2, 3 (ii) Find the pre – images of 29, 53 (iii) *Identify the type of function.* The function $f: N \rightarrow N$ be defined by $f(x) 3x + 2, x \in N$ Answer: f(1) = 3(1) + 2(i) If x = 1=3 + 2 = 5 If x = 2f(2) = 3(2) + 2 =6 + 2 = 8 If x = 3f(3) = 3(3) + 2= 9 + 2 = 11 The images of 1, 2, 3, are 5, 8, 11 respectively. (ii) *If x is the pre* – *image of* 29*, then* f(x) = 29*. Hence* 3x + 2 = 29*3x = 27* x = 27/9 Therefore x = 9 Similarly, if x is the preimage of 53, then f(x) = 53. Hence 3x + 2 = 53x = 51/3 *Therefore x = 17 3x* = *51* Since different elements of N have different images in the co – domain, the function f is one (iii) - one function. The co – domain of f is N But the range of $f = \{5, 8, 11, 14, 17 \dots \}$ is a proper subset of N. Therefore f is not an onto function. That is, f is an into function. Thus f is one – one and into function. 16. Forensic scientists can determine the height (in cms) of a person based on the length of their thigh bone. They usually do so using the function h(b) = 2.47b + 54. 10 where 'b' is the length of the thigh bone. (i) Check if the function 'h' is one – one (ii) Also find the hight of a person if the length of his thigh bone is 50cms. (iii) Find the length of the thigh bone if the height of a person is 147.96 cms. Answer: (i) To check if h is one – one, we assume that $h(b_1) = h(b_2)$. Then we get, $2.47b_1 + 54.10 = 2.47b_2 + 54.10$ 2.47b₁ $= 2.47b_2$ $b_1 = b_2$ Thus, $h(b_1) = h(b_2) \Longrightarrow b_1 = b_2$. So the function h is one – one. (ii) If the length of the thigh bone b = 50, then the height is $h(50) = (2.47 \times 50) + 54.10$ = 112.50 + 54.10 = 177.6 cms. If the height of a person is 147.96 cms, then h(b) = 147.96 and so the length of the thight bone (iii) is given by 2.47b + 54. 10 = 147.96 $b = \frac{93.86}{2.47} = \frac{93.86 \times 100}{2.47 \times 100} = \frac{9386}{247} = 38$ 17. Let f be a function from R to R defined by f(x) = 3x - 5. Find the values of 'a' and 'b' given (a, 4) and (1, b) belong to f. that Answer: f(x) = 3x - 5 can be written as $f = \{ (x, 3x - 5) | x \in R \}$ (a, 4) means the image of a is 4. That is f(a) = 43a - 5 = 4 \Rightarrow 3a = 4 + 5 \Rightarrow 3a = 9 *mccuss* kalvikural.com------10[™] MA THS DSG

~ 42 ~ $\Rightarrow a = \frac{9}{3}$ $\Rightarrow a = 3$ (1, b) means the image of 1 is b. That is f(1) = b B = -2 ⇒3(1) – 5 ⇒3-5 = -2 The distance S (in kms) travelled by a particle in time 't' hours is given by S(t) = $\frac{t^2 + t}{2}$ Find 18. the distance travlled by the particle after. (i) three and half hours. (ii) eight hours and fifteen minutes. Answer: The distance travelled by the particle in time t hours is given by $S(t) = \frac{t^2 + t}{2}$ t = 3.5 hours. Therefore, $S(3.5) = \frac{3.5^2 + 3.5}{2} = \frac{12.25 + 3.5}{2} = \frac{15.755}{2} = 7.875$ (i) The distance travlled in 3.5 hours is 7.875 Kms. t = 8.25 hours. Therefore, $S(8.25) = \frac{8.25^2 + 8.25}{2} = \frac{68.0625 + 8.25}{2} = \frac{76.3125}{2} = 38.15625$ (ii) The distance travelled in 8.25 hours is 38.16 Kms, approximately. If the function f: R \rightarrow R defined by f(x) = $\begin{cases} 2x + 7, & x < -2 \\ x^2 - 2, & -2 \le x < 3 \\ 3x - 2, & x \ge 3 \end{cases}$ Find the 19. (iv) $\frac{f(1)-3f(4)}{f(-3)}$ (ii) f(-2) (iii) f(4)+ 2f(1) values of (i) f(4) Answer: *f*(4) = 3x − 2 (i) = 3(4) – 2 = 12 – 2 = 10 $f(-2) = x^2 - 2$ = $(-2)^2 - 2$ = 4 - 2 = 2 (ii) (iii) f(4) + 2 f(1) f(4) = 3x - 2= 3(4) - 2= 12 - 2= 10 $2f(1) = x^2 - 1$ $= 2[(1)^2 - 2]$ = 2(1 - 2)= 2(-1)= -2f(4) + 2 f(1) = 10 - 2 = 8f(1) - 3f(4)(iv) f(-3) $f(1) = -1, \qquad f(4) = 10,$ $\begin{array}{rcl} f(-3) = 2x + 7 & = 2(-3) + 7 & = -6 + 7 & = 1 \\ \hline \frac{f(1) - 3f(4)}{f(-3)} & = \frac{-1 - 3(10)}{1} & = \frac{-1 - 30}{1} & = \frac{-31}{1} & = -31 \end{array}$ Let $f: A \rightarrow B$ be a function defined by $f(x) = \frac{x}{2} - 1$, where $A = \{2, 4, 6, 10, 12\}$, 20. $B = \{0, 1, 2, 4, 5, 9\}$. Respresent f by (i) Set of ordered pairs, (ii) a table (iii) a graph (iv) an arrow diagram Answer: Given : $f(x) = \frac{x}{2} - 1, A = \{2, 4, 6, 10, 12\} and B = \{0, 1, 2, 4, 5, 9\}$ *wcchss* **vikural.com**------10[™] MA THS DSG

(i) An arrow diagram

~ 43 ~

(iv) graphical form

(ii) a table

X	2	4	6	10	12
<i>f(x)</i>	0	1	2	4	5

(iii) Set of ordered pairs

 $f = \{ (2,0), (4,1), (6,2), (10,4), (12, 5) \}$

21. Represent the function f = { (1, 2), (2, 2), (3, 2), (4, 3), (5, 4) } through (i) an arrow diagram (ii) a table form (iii) a graph Answer:

Given : f = { (1, 2), (2, 2), (3, 2), (4, 3), (5, 4) } (i) An arrow diagram

(iii) graphical form

(ii) a table

x		1	2	3	4	5
f(x) 2	2	2	2	3	4

~ 44 ~

22. Show that the function $f : N \rightarrow N$ defined by f(x) = 2x - 1 is one – one but not onto. Answer:

Given : f(x) = 2x - 1 $N = \{1, 2, 3, 4, 5, \dots\}$ f(1) = 2(1) - 1= 2 - 1 = 1 f(2(=2(2)-1))= 4 - 1 = 3 f(3) = 2(3) - 1= 6 - 1 = 5 f(4) = 2(4) - 1= 7 = 8 - 1 f(5) = 2(5) - 1= 10 - 1 = 9

In the figure, for different elements in x, there are different image in f(x)Hence $f : N \rightarrow N$ is said to be onto fuction if the range of f is equal to the co – domain of f. But here the range is not equal to co – domain. Therefore it is one – one but not onto function.

23. Show that the function $f : N \rightarrow N$ defined by $f(m) = m^2 + m + 3$ is one – one function. Answer:

Given : function $f : N \rightarrow N$ defined by $f(m) = m^2 + m + 3$ $N = \{ 1, 2, 3, 4, 5, 6, \dots, \}, m \in N$

In the figure, for different elements in the (x) domain, there are differient images in f(x). Hence $f: N \rightarrow N$ is a one – one but not onto function as the range of f is not equal to co – domain.

24. Let $A = \{1, 2, 3, 4\}$ and B = N. Let $f : A \rightarrow B$ be defined by $f(x) = x^3$ then, (i) find the range of f (ii) identify the type of function. Answer: Given : A = { 1, 2, 3, 4 }, B = N and f : A \rightarrow B be defined by $f(x) = x^3$ $f(x) = x^3$ $f(1) = 1^3$ (*i*) Range of *f* = { 1, 8, 27, 64 } = 1 $f(2) = 2^3$ = 8 (ii) It is one – one and into function. $f(3) = 3^3$ = 27 $f(4) = 4^3$ = 64 25. In each of the following cases state whether the function is bijective or not. Justify your (i) $f: R \rightarrow R$ defined by f(x) = 2x + 1(ii) $f: R \rightarrow R$ defined by $f(x) = 3 - 4x^2$ answer. Answer: Given : $f : R \rightarrow R$ defined by f(x) = 2x + 1(i) f(x) = 2x + 1f(1) = 2(1) + 1 = 2 + 1 = 3f(2) = 2(2) + 1 = 4 + 1= 5 f(-1) = 2(-1) + 1 = -2 + 1 = -1f(-2) = 2(-2) + 1 = -4 + 1= -3

MCCHSS

vikura

com

10[™] MA THS

It is a bijective function. Distinct element of A have distinct images in B and every element in B has a pre – image in A.

(ii) Given : $f : R \to R$ defined by $f(x) = 3 - 4x^2$ $f(x) = 3 - 4x^2$ $f(1) = 3 - 4(1)^2 = 3 - 4(1) = 3 - 4 = -1$ $f(-1) = 3 - 4(-1)^2 = 3 - 4(1) = 3 - 4 = -1$ It is not bijective function as the +ve numbers in R do not have pre image in X in R.

26. Let $A = \{ -1, 1 \}$ and $B = \{ 0, 2 \}$. If the function $f : A \rightarrow B$ defined by f(x) = ax + b is an onto function? Find 'a' and 'b'

Answer: Given : A = { -1, 1 } and B = { 0, 2 } f(x) = ax + b is onto function. \Rightarrow -a + b = 0 ----- (1) f(-1) = 0 \Rightarrow a(-1) + b = 0 $\Rightarrow a + b = 2$ -----(2) f(1) = 2 \Rightarrow a(1) + b = 2 Solve (1) and (2) -a + b = 0 a + b = 2 2b = 2 b = 1Substitute 'b' value in (1) or (2) $\Rightarrow -a + 1 = 0$ -a + b = 0 $\Rightarrow -a = -1$ a = 1 Therefore a = 1 and b = 1(x+2)*x* > 1 If the function f is defined by $f(x) = \{2, \dots, n\}$ 27. $-1 \leq x \leq 1$ Find the values of (x - 1)-3 < x < -1(i) f(3) (ii) f(0) (iii) f(-1.5) (iv) f(2) + f(-2)Answer: f(3) = x + 2= 3 + 2 = 5 f(0) = 2(i) (ii) *f*(−1.5) = *x* − 1 = (-1.5) – 1 (iii) = -2.5 (iv) f(2) + f(-2)f(2) = x + 2= 2 + 2 = 4 f(-2) = x - 1= (-2) – 1 = -2 -1 = -3 f(2) + f(-2) = 4 - 3= 1 6x + 1 $if-5 \leq x < 2$ A function $f: [-5, 9] \rightarrow R$ is defind as follows $f(x) = \begin{cases} 5x^2 - 1 & \text{if } 2 \leq x < 6 \end{cases}$ Find the values of 28. (3x - 4)if $6 \leq x \leq 9$ $(iv) \frac{2f(-2)-f(6)}{f(4)+f(-2)}$ 2f(4) + f(8) (i) f(-3) + f(2)(ii) f(7) - f(1)(iii) Answer: f(-3) + f(2)(i) f(-3) = 6x + 1 = 6(-3) + 1 = -18 + 1 = -17 = 5(4) - 1 = 20 - 1 = 19 $f(2) = 5x^2 - 1$ = 5(2)² – 1 f(-3) + f(2) = -17 + 19 = 210[™] MA THS MCCHSS DSG

(ii)
$$f(7) - f(1)$$

 $f(7) = 3x - 4$ $= 3(7) - 4$ $= 21 - 4$ $= 17$
 $f(1) = 6x + 1$ $= 6(1) + 1$ $= 6 + 1$ $= 7$
 $f(7) - f(1) = 17 - 7$ $= 10$
(iii) $2f(4) + f(8)$
 $2f(4) = 2(5x^2 - 1) = 2(5(4)^2 - 1) = 2(5(16) - 1) = 2(80 - 1) = 2(79) = 158$
 $f(8) = 3x - 4$ $= 3(8) - 4$ $= 24 - 4$ $= 20$
 $2f(4) + f(8)$ $= 158 + 20 = 178$
(iv) $\frac{2f(-2) - f(6)}{f(4) + f(-2)}$
 $f(-2) = 6x + 1$ $= 6(-2) + 1$ $= -12 + 1$ $= -11$
 $f(6) = 3x - 4$ $= 3(6) - 4$ $= 18 - 4$ $= 14$
 $f(4) = 5x^2 - 1$ $= 5(4)^2 - 1$ $= 5(16) - 1$ $= 80 - 1$ $= 79$
 $\frac{2f(-2) - f(6)}{f(4) + f(-2)}$ $= \frac{2(-11) - 14}{79 - 11} = \frac{-22 - 14}{68} = \frac{-36}{68} = \frac{-9}{17}$
The distance S an object travels under the influence of gravity in time 't' seconds is given by
 $S(t) = \frac{1}{2}gt^2 + at + b$ where, (g is the acceleration dut to gravity), 'a', 'b' are constants.
Check if the function S(t) is one - one.
 $S(t) = \frac{1}{2}g(1)^2 + a(1) + b$ $= \frac{1}{2}g + a + b$
Let $t = 1, 2, 3, \dots$ seconds
 $S(1) = \frac{1}{2}g(2)^2 + a(2) + b$ $= 2g + 2a + b$

29.

10TH

Yes, for every different values of t, there will be different values as images. And there will be diffeirent pre images for the different values of the range. Therefore it is one – one function.

30. The function 't' which mapes temperature in Celsius (C) into temperature in Fahrenheit (F) is defind by t(c) = F where F = ⁹/₅C + 32. Find,
(i) t(0) (ii) t(28) (iii) t(-10) (iv) The value of C when t(C) = 212
(v) the temperature when the Celsius value is equal to the Farenheit value.
Answer :
(i) Given : t(C) = F

(i) Given
$$i(c) = 1$$

 $F = t(C)$ $t(c) = \frac{9}{5}C + 32$
 $t(0) = \frac{9}{5}(0) + 32 = 0 + 32 = 32^{0}F$
(ii) $t(28) = \frac{9}{5}(28) + 32 = \frac{252}{5} + 32 = 50.4 + 32 = 82.4^{0}F$
(iii) $t(-10) = \frac{9}{5}(-10) + 32 = \frac{-90}{5} + 32 = -18 + 32 = 14^{0}F$
(iv) $t(C) = 212$
 $\frac{9}{5}C + 32 = 212 \implies \frac{9}{5}C = 212 - 32 \implies \frac{9}{5}C = 180$
 $C = 180 \times \frac{5}{9} \implies 20 \times 5 = 100$
 $C = 100^{0}c$
(v) $t(-40) = \frac{9}{5}(-40) + 32 \implies 9(-8) + 32 \implies -72 + 32$
 $t(-40) = -40^{0}$
MATHS MCCHSS DSG

~ 47 ~ Find (f o g) and (g o f) when f(x) = 2x + 1 and $g(x) = x^2 - 2$ 31. Answer: Given : f(x) = 2x + 1, $q(x) = x^2 - 2$ $fog = f(g(x)) = f(x^2 - 1) = 2(x^2 - 2) + 1 = 2x^2 - 4 + 1$ (i) $fog = 2x^2 - 3$ $gof = g(f(x)) = g(2x + 1) = (2x + 1)^2 - 2 = (2x)^2 + 2(2x)(1) + 1^2 - 2$ (ii) $= 4x^{2} + 4x + 1 - 2$ $= 4x^{2} + 4x - 1$ $qof = 4x^2 + 4x - 1$ Represent the function $f(x) = \sqrt{2x^2 - 5x + 3}$ as a composition of two functions. 32. Answer: Let $f_2(x) = 2x^2 - 5x + 3$ and $f_1(x) = \sqrt{x}$ $f(x) = \sqrt{2x^2 - 5x + 3}$ $=\sqrt{f_2(x)}$ $= f_1(f_2(x))$ $= f_1 f_2(x)$ 33. If f(x) = 3x - 2, g(x) 2x + k and if (fog) = (gof), then find the value of 'k'. Answer: Given : f(x) = 3x - 2, g(x) = 2x + k and (fog) = (gof)fog = f(g(x)) = f(2x + k) = 3(2x + k) - 2 = 6x + 3k - 2foq = 6x + 3k - 2gof = g(f(x)) = g(3x - 2) = 2(3x - 2) + k = 6x - 4 + kqof = 6x - 4 + kfoq = qof $\Rightarrow 6x + 3k - 2 = 6x - 4 + k$ $\Rightarrow 3k-2 = -4+k$ $\Rightarrow 3k - k$ = -4 + 2 $\Rightarrow 2k = -2$ Therefore k = -134. Find 'k' if fof(k) = 5 where f(k) = 2k - 1. Answer: Given : fof(k) = 5 and f(k) = 2k - 1. fof(k) = f(f(k)) = 2(2k - 1) - 1= 4k - 2 - 1= 4k - 3Thus fof(k) = 4k - 3But, it is given that fof(k) = 5Therefore $4k-3 = 5 \implies 4k = 5 + 3$ $4k = 8 \implies k = \frac{8}{4} \implies K = 2$ Find 'x' if gff(x) = fgg(x), given f(x) = 3x + 1 and g(x) = x + 335. Answer: Given : gff(x) = fgg(x), f(x) = 3x + 1 and g(x) = x + 3 \Rightarrow g[f(3x + 1)] \Rightarrow g[3(3x+1)+1] \Rightarrow g(9x+4) $gff(x) = g[f{f(x)}]$ 10[™] MA THS

ww.kalvikural.co

~ 48 ~ \Rightarrow (9x+4) + 3 \Rightarrow 9x + 7 $Fgg(x) = f[g\{g(x)\}]$ $\Rightarrow f[g(x+3)] \Rightarrow f[(x+3)+3]$ $\Rightarrow f(x + 6)$ $\Rightarrow [3(x+6)+1] \Rightarrow (3x+18+1) \qquad \Rightarrow 3x+19$ These two quantities being equal, we get 9x + 7 = 3x + 19 \Rightarrow 9x - 3x = 19 - 7 \Rightarrow 6x - 12 That is *x* = 2 Find (f o g) and (g o f) when f(x) = x - 6 and $g(x) = x^2$ 36. Answer: Given : f(x) = x - 6 and $g(x) = x^{2}$ $fog = f(g(x)) \implies f(x^2)$ $\Rightarrow x^2 - 6$ $fog = x^2 - 6$ $gof = g(f(x)) \implies g(x-6) \implies (x-6)^2$ $qof = x^2 - 12x + 36$ Therefore fog ≠ gof Find (fog) and (gof) when f(x) = 3 + x and g(x) = x - 437. Answer: Given : f(x) = 3 + x and g(x) = x - 4 $fog = f(g(x)) \implies f(x-4)$ \Rightarrow 3 + x - 4 fog = x - 1 $gof = g(f(x)) \implies g(3 + x)$ \Rightarrow (3 + x)-4 *gof* = *x* − 1 Therefore fog = gof Find (f o g) and (g o f) when $f(x) = \frac{2}{x}$ and $g(x) = 2x^2 - 1$ 38. Answer: Given : $f(x) = \frac{2}{x}$ and $g(x) = 2x^2 - 1$ $fog = f(g(x)) \implies f(2x^2 - 1) \implies \frac{2}{2x^2 - 1}$ $fog = \frac{2}{2x^2 - 1}$ $gof = g(f(x)) \quad \Rightarrow g\left(\frac{2}{x}\right) \quad \Rightarrow 2\left(\frac{2}{x}\right)^2 - 1 \Rightarrow 2\left(\frac{4}{x^2}\right) - 1 \quad \Rightarrow \left(\frac{8}{x^2}\right) - 1$ $gof = \frac{8}{r^2} - 1$ Therefore fog $\neq gof$ Find (f o g) and (g o f) when $f(x) = \frac{x+6}{3}$ and g(x) = 3 - x39. Answer: Given : $f(x) = \frac{x+6}{3}$ and g(x) = 3 - x $\Rightarrow \frac{3-x+6}{3} \Rightarrow \frac{9-x}{3}$ $fog = f(g(x)) \implies f(3 - x)$ $fog = \frac{9-x}{2}$ $gof = g(f(x)) \implies g\left(\frac{x+6}{3}\right) \implies \exists -\left(\frac{x+6}{3}\right) \Rightarrow \frac{9-x-6}{3}$ $gof = \frac{3-x}{3}$ Therefore fog \neq gof 40. Find the value of k, such that fog = gof f(x) = 3x + 2 and g(x) = 6x - kAnswer:

MCCHSS

vikural.com

Given : f(x) = 3x + 2 and g(x) = 6x - k

10[™] MATHS

 $fog = f(g(x)) \implies f(6x - k) \implies 3(6x - k) + 2 \implies 18x - 3k + 2$ gof = 18x - 3k + 2 $gof - g(f(x)) \implies g(3x + 2) \implies 6(3x + 2) - k \implies 318x + 12 - k$ gof = 18x + 12 - k $fog = gof \implies 18x - 3k + 2 = 18x + 12 - k$ $\implies -3k + 2 = 12 - k$ $\implies -3k + k = 12 - 2$ $\implies -2k = 10$ $\implies k = -5$ Therefore k = -5

~ 49 ~

41. Find the value of k, such that fog = gof, f(x) = 2x - k and g(x) = 4x + 5Answer:

Given : f(x) = 2x - k and g(x) = 4x + 5fog = $f(g(x)) \implies f(4x + 5) \implies 2(4x + 5) - k$ fog = 8x + 10 - kgof = $g(f(x)) \implies g(2x - k) \implies 4(2x - k) + 5$ gof = 8x - 4k + 5fog = gof $\implies 8x + 10 - k = 8x - 4k + 5$ $\implies 10 - k = -4k + 5$ $\implies -k + 4k = 5 - 10$ $\implies 3k = -5$ $\implies k = \frac{-5}{3}$

42. If f(x) 2x - 1 and $g(x) = \frac{x+1}{2}$ show that fog = gof = x Answer : Given : f(x) = 2x - 1 and $g(x) = \frac{x+1}{2}$ fog = $f(g(x)) \implies f\left(\frac{x+1}{2}\right) \implies 2\left(\frac{x+1}{2}\right) - 1$ fog = x + 1 - 1 = xfog = x - - - - - - (1)gof = $g(f(x)) \implies g(2x - 1) \implies \frac{2X - 1 + 1}{2}$ gof = $\frac{2X}{2}$ Therefore fog = gof gof = x - - - - - - - - - (2)From (1) and (2) LHS = RHS Therefore fog = gof 43. If $f(x) = x^2 - 1$, g(x) = x - 2 find 'a', if gof(a) = 1.

43. If
$$f(x) = x^2 - 1$$
, $g(x) = x - 2$ find 'a', if $gof(a) = 1$.
Answer:
Given : $f(a) = a^2 - 1$ and $g(a) = a - 2$
 $gof = g(f(x)) \Rightarrow g(a^2 - 1) \Rightarrow (a^2 - 1) - 2$
 $\Rightarrow a^2 - 1 - 2 \Rightarrow a^2 - 3$
Gof(a) = 1 $\Rightarrow a^2 - 3 = 1 \Rightarrow a^2 = 1 + 3$
 $10^{TH} MATHS$
MCCHSS

~ 50 ~ $\Rightarrow a^2 + 4 \qquad \Rightarrow a = \sqrt{4}$ $\Rightarrow a = \pm 2$ 44. Find 'k', if f(k) = 2k - 1 and fof(k) = 5Answer: Given : f(k) = 2k - 1 $fof = f(f(k)) \implies f(2k-1) \implies 2(2k-1) - 1$ fof = 4k - 2 - 1fof = 4k - 3 $fof(k) = 5 \implies 4k - 3 = 5 \implies 4k = 5 + 3$ $\Rightarrow 4k = 8 \qquad \Rightarrow k = \frac{8}{4}$ $\Rightarrow k = 2$ 45. Let A, B, C \subseteq N and a function $f : A \rightarrow B$ be defined by f(x) 2x + 1 and $g:B \rightarrow C$ be defined by $g(x) = x^2$. Find the range of fog and gof Answer: Given : f(x) = 2x + 1 and $g(x) x^2$ $fog = fog(x) \implies f(x^2)$ $\Rightarrow 2(x^2) + 2$ $foq = 2x^2 + 1$ $qof = q(f(x)) \implies q(2x+1) \implies (2x+1)^2$ \Rightarrow 4x² + 4x + 1 $qof = 4x^2 + 4x + 1$ Range of fog = { $y | y = 2x^2 + 1, x \in N$ } Range of $qof = \{y | y = 4x^2 + 4x + 1, x \in N\}$ 46. Let $f(x) = x^2 - 1$. Find fof and fof of Answer: Given : $f(x) = x^2 - 1$ (i) fof = f(f(x)) $\Rightarrow f(x^2 - 1) \Rightarrow (x^2 - 1)^2 - 1 \Rightarrow x^4 - 2x^2 + 1 - 1$ $\Rightarrow x^4 - 2x^2$ $\Rightarrow f(x^4 - 2x^2) \quad \Rightarrow (x^4 - 2x^2)^2 - 1 \qquad \Rightarrow x^8 - 4x^2 + 4x^4 - 1$ (ii) fofof = fof(f(x))47. If $f : R \to R$ and $g : R \to R$ are defined by $f(x) = x^5$ and $g(x) = x^4$ then check if f, g are one – one and fog is one – one? Answer : $f(x) = x^5$ and $g(x) = x^4$ Given : $\Rightarrow (x^4)^5$ $\Rightarrow x^{20}$ $fog = f(g(x)) \implies f(x^4)$ *Therefore f is one – one also gof is one – one.* 48. If f(x) = x - 1, g(x) = 3x + 1 and $h(x) = x^2$ then prove that fo(goh) = (fog)ohAnswer: Given : f(x) = x - 1, g(x) = 3x + 1 and $h(x) = x^2$ LHS : fo(goh) $\Rightarrow g(x^2) \Rightarrow 3x^2 + 1$ qoh = q(h(x)) $= 3x^2 + 1$ qoh $fo(qoh) = f(3x^2 + 1) \implies 3x^2 + 1 - 1 \implies 3x^2$ 10[™] MATHS MCCHSS

vikural.com

~ 51 ~ $fo(goh) = 3x^2$ ------ (1) RHS: (fog)oh $= f(q(x)) \implies f(3x+1)$ $\Rightarrow 3x + 1 - 1 \Rightarrow 3x$ foq = 3xfog $(fog)oh = (fog)(h(x)) \implies (fog)(x^2)$ $\Rightarrow 3x^2$ $(fog)oh = 3x^2$ ----- (2) From (1) and (2) LHS = RHSThat is fo(goh) = (fog)oh 49. If $f(x) = x^2$, g(x) = 2x and h(x) = x + 4 then prove that fo(goh) = (fog)ohAnswer: Given : $f(x) x^2$, g(x) = 2x and h(x) = x + 4qoh = q(h(x)) $\Rightarrow g(x+4) \Rightarrow 2(x+4) \Rightarrow 2x+8$ = 2x + 8qoh $fo(qoh) = f(2x + 8) \implies (2x + 8)^2 \implies (2x + 8$ $fo(goh) = 4x^2 + 32x + 64$ -----(1) RHS: (fog)oh $\Rightarrow (2x)^2$ $\Rightarrow 4x^2$ foq = f(q(x))*⇒*f(2x) $= 4x^{2}$ fog $\Rightarrow 4 (x+4)^2 \Rightarrow 4(x^2+8x+16) \Rightarrow 4x^2+32x+64$ (fog)oh = (fog)(h(x)) \Rightarrow (fog)(x + 4) $(fog)oh = 4x^2 + 32x + 64$ -----(2) From (1) and (2) LHS = RHSThat is fo(goh) = (fog)oh50. If f(x) = x - 4, $g(x) = x^2$ and h(x) = 3x - 5 then prove that fo(goh) = (fog)ohAnswer: Given : $f(x) = x^2$ and h(x) = 3x - 5qoh = q(h(x)) $\Rightarrow q(3x-5) \Rightarrow (3x-5)^2$ \Rightarrow 9x² - 30x + 25 $= 9x^2 - 30x + 25$ qoq $fo(qoh) = f(9x^2 - 30x + 25) \implies (9x^2 - 30x + 25) - 4 \implies 9x^2 - 30x + 25 - 4$ $fo(goh) = 9x^2 - 30x + 21$ -----(1) RHS: (fog)oh $= f(g(x)) \implies f(x^2) \implies x^2 - 4$ fog $= x^2 - 4$ foq $(fog)oh = (fog)(h(x)) \implies (fog)(3x-5) \implies (3x-5)^2-5 \implies 9x^2-30x+25-4$ $(fog)oh = 9x^2 - 30x + 21$ -----(2) From (1) and (2) LHS = RHSThat is fo(goh) = (fog)oh51. If f(x) = 2x + 3, g(x) = 1 - 2x and h(x) = 3x. Prove that fo(goh) = (fog)ohAnswer: Given : f(x) = 2x + 3, q(x) = 1 - 2x and h(x) = 3xLHS : fo(goh) 10[™] MA THS MCCHSS DSG vikural.com

~ 52 ~ = g(h(x)) $\Rightarrow g(3x) \Rightarrow 1 - 2(3x) \Rightarrow 1 - 6x$ qoh goh = 1 – 6x $fo(goh) = f(1 - 6x) \implies 2(1 - 6x) + 3$ $\Rightarrow 2 - 12x + 3$ fo(goh) = 5 - 12x ------ (1) RHS: (fog)oh fog = f(g(x)) $\Rightarrow f(1-2x)$ $\Rightarrow 2(1-2x)+3$ $\Rightarrow 2-4x+3$ = 5 - 4xfoq ⇒5 – 4(3x) $(fog)oh = (fog)(h(x)) \implies (fog)(3x)$ (fog)oh = 5 - 12x -----(2)From (1) and (2) LHS = RHSThat is fo(goh) = (fog)oh52. Let $f = \{(-1, 3), (0, -1), (2, -9)\}$ be a linear function from Z into Z. Find f(x). Answer: Given : f = { (-1, 3), (0, -1), (2, -9) } f(x) = ax + b is onto function. f(-1) = -3 \Rightarrow a(-1) + b = 3 \Rightarrow -a + b = 3 ----- (1) $\Rightarrow a(0) + b = -1$ $\Rightarrow 0 + b = -1 \Rightarrow b = -1$ f(0) = -1 Substitute 'b' value in (1) -a + b = 0⇒-a + (-1) = 3 $\Rightarrow -a - 1 = 3 \Rightarrow -a = 3 + 1 \Rightarrow -a = 4$ a = - 4 Therefore the linear function f(x) is -4x - 1

53. In electrical circuit theory, a circuit C(t) is called linear circuit if it satisfies the superposition principle given by $C(at_1 + bt_2) = aC(t_1) + bC(t_2)$, where a, b are constants. Show that the circuit C(t) = 3t is linear.

Answer : Given : C(t) = 3tTo prove : C(t) is linear $C(at_1) = 3at_1$ ------ (1) $c(bt_2) = 3bt_2$ ------(2) (1) + (2) $C(at_1) + c(bt_2) = 3at_1 + 3bt_2 \implies C(at_1 + bt_2) = 3(at_1 + bt_2)$ Superposition principle is satisified. Hence C(t) = 3t is linear function.

THEOREMS

~ 53 ~

THEOREM – 1 BASIC PROPORTIONALITY THEOREM (OR) THALES THEOREM.

State and prove Basic proportionality theorme (or) Thales theorem.

Statement : If a straight line is drawn parallel to one side of a triangle intersecting the other two sides, then divides the sides in the same ratio.

Given: In a $\triangle ABC$, D is a point on AB and E is a point on AC To Prove : $\frac{AD}{DB} = \frac{AE}{EC}$ Construction: Draw a line DE || BC

Step. No.	Statement	Reason
1.	∠ABC = ∠ADE = ∠1(1)	Corresponding angles
2.	∠ACB = ∠AED = ∠2(2)	Corresponding angles
3.	∠BAC = ∠DAE = ∠3(3)	Common angles to \varDelta ABC and \varDelta ADE
4.	$\Delta ABC \sim \Delta ADE$	AA Similarity, from (1), (2) and (3)
5.	$\frac{AB}{AD} = \frac{AC}{AE}$	corresponding sides are proportional.
6.	$\frac{AD + DB}{AD} = \frac{AE + EC}{AE}$	Split AB and AC
7.	$1 + \frac{DB}{AD} = 1 + \frac{EC}{AE}$	
8.	$\frac{\frac{DB}{AD}}{\frac{DB}{DB}} = \frac{\frac{EC}{AE}}{\frac{AD}{DB}} = \frac{AE}{EC}$ (Hence proved)	By cancelling 1 both sides. Taking their reciprocals

CONVERSE OF THALES THEOREM (or) BASIC PROPORTIONALITY THEOREM.

If a straight line divides any two sides of a triangle in the same ratio, then the line must be parallel to the third side.

MCCHSS

lvikural.

con

10[™] MA THS

THEOREM – 2 ANGLE BISECTOR THEOREM.

State and prove Angle Bisector Theorem.

Statement : The internal bisector of an angle of triangle divides the opposite side internally in the ratio of the corresponding sides containing the angle.

Given : In a \triangle ABC, AD is the internal bisector of \angle BAC which meets

To Prove :
$$\frac{BD}{DC} = \frac{AB}{AC}$$

Construction : Draw CE || DA to meet BA produced at E. Let \angle BAD = $\angle 1$, \angle DAC = $\angle 2$, \angle AEC = $\angle 3$, \angle ACE = $\angle 4$

Proof:

Step. No.	Statement	Reason
1.	∠1 = ∠2(1)	AD is the angle bisector of $\angle A$
2.	∠1 = ∠3(2)	Corresponding angles. Since CE DA
3.	∠2 = ∠4(3)	
4.	∠3 = ∠4	Alternate angles, because AC is transversal From (1), (2) and (3)
5.	AE = AC(4)	Sides opposite to equal angles are equal By thales theorem.
6.	$:\frac{BD}{DC} = \frac{AB}{AE}$	
7.	$:\frac{BD}{DC} = \frac{AB}{AC}$ (Hence proved)	From (4)

CONVERSE OF ANGLE BISECTOR THEOREM.

If a straight line through one vertex of a triangle divides the opposite side internally in the ratio of the other two sides, then the line bisects the angle internally at the vertex.

MCCHSS kalvikural.com

PYTHAGORAS THEOREM

State and prove Pythagoras Theorem.

Given :In a $\triangle ABC$, $\angle A = 90^{\circ}$ To Prove: $AB^2 + AC^2 = BC^2$ Construction:Draw $AD \perp BC$

Proof:

Step. No.	Statement	Reason
1.	$\triangle ABC \sim \triangle DBA$	AA similarity, because, $\angle B$ is common, $\angle BAC = \angle BDA = 90^{\circ}$
2	$\frac{AB}{BD} = \frac{BC}{AB}$	Corresponding sides are proportional.
	$AB^2 = BC \times BD \dots $	
3.	$\Delta ABC \sim \Delta DAC$	AA similarity, because, $\angle C$ is common, $\angle BAC = \angle ADC = 90^{\circ}$
4.	$\frac{BC}{AC} = \frac{AC}{DC}$	Corresponding sides are proportional.
	$AC^2 = BC \times DC$ (2)	
5.	AB2 + AC2 = (BC × BD) + (BC × DC) = BC × (BD + DC) = BC × BC AB2 + AC2 = BC2 (hence proved)	By adding (1) and (2)

CONVERSE OF PYTHAGORAS THEOREM.

WWW

If the square of the longest side of a triangle is equal to sums of squares of other two sides, then the triangle is right angle triangle.

mccHss kalvikural.com

THEOREM – 4 ALTERNATE SEGMENT THEOREM (OR) TANGENT – CHORD THEOREM.

State and prove Alternate segment theorem (or) Tangent – chord theorem..

Statement : If from the point of contact of a tangent of a circle, a chord is drawn then the angles between the tangent and the chord are respectively to the angles in the corresponding alternate segments.

~ 56 ~

Given : A circle with centre at O, tangent AB touches the circle at P and PQ is a chord. S and T are two points on the circle in the opposite sides of chord PQ.
To Prove : ∠QPB = ∠PSQ, ∠QPA = ∠PTQ
Construction : Draw the diameter POR. Draw QR, QS, QT, PS and PT

Proof:

Step. No.	Statement	Reason
1.	$\angle QPB = \theta$ (say) $\therefore \angle QPR = 90 - \theta - (1)$	Diameter RP is perpendicular to tangent AB
2.	$\angle PQR = 90^{\circ}$	Angle in semicircle is 90 ⁰
3.	∠QRP = θ(2)	In \triangle PQR, the sum of all angles are 180 ⁰ so (90 - θ) + 90 + \angle QRP = 180 ⁰
4.	$\angle QRP = \angle QSP = \theta$ (3)	Angles in the same segment are equal
5.	$\angle QPB = \angle QSP = \theta$ (hence (i) proved)	From (1), (2) and (3)
6.	$\angle QPB = \theta \implies \angle QPA = 180 - \theta - \dots $ (4)	Linear pair of angles
7.	$\angle QSP = \theta \implies \angle PTQ = 180 - \theta(5)$	Sum of opposite angles of a cyclic quadrilateral PTQS is 180 ⁰
8.	∠QPA = ∠PTQ	From (4) and (5)

~ 57 ~ COORDINATE GEOMETRY 1. Find the area of the triangle whose vertices are (-3, 5), (5, 6) and (5, -2) Answer: Area of the triangle $=\frac{1}{2} \begin{cases} x_1 & x_2 & x_3 & x_1 \\ y_1 & y_2 & y_3 & y_1 \end{cases}$ Sq. units. $x_1 = -3$, $x_2 = 5$, $x_3 = 5$, $y_1 = 5$, $y_2 = 6$ and $y_3 = -2$ Area of the triangle $= \frac{1}{2} \begin{pmatrix} -3 & 5 & 5 & -3 \\ 5 & 6 & -2 & 5 \end{pmatrix} = \frac{1}{2} \begin{bmatrix} (-18 - 10 + 25) - (25 + 30 + 6) \\ = \frac{1}{2} \begin{bmatrix} (-3) - (61) \end{bmatrix} = \frac{1}{2} \begin{bmatrix} (-3 - 61) \\ = \frac{1}{2} \begin{bmatrix} (-64) \\ = -32 \end{bmatrix}$ Area of the triangle = 32 Sq. Units. 2. Find the area of the triangle whose vertices are (1, -1), (-4, 6) and (-3. -5) Answer: Area of the triangle $=\frac{1}{2} \begin{cases} x_1 & x_2 & x_3 & x_1 \\ y_1 & y_2 & y_3 & y_1 \end{cases}$ Sq. units. $x_1 = 1$, $x_2 = -4$, $x_3 = -3$, $y_1 = -1$, $y_2 = 6$ and $y_3 = 5$ Area of the triangle $= \frac{1}{2} \begin{pmatrix} 1 & -4 & -3 & 1 \\ -1 & 6 & -5 & -1 \end{pmatrix} = \frac{1}{2} \begin{bmatrix} (6+20+3) - (4-18-5) \end{bmatrix}$ $= \frac{1}{2} \begin{bmatrix} (29) - (-19) \end{bmatrix} = \frac{1}{2} \begin{bmatrix} (29+19) & =\frac{1}{2} \end{bmatrix}$ Area of the triangle = 24 Sq. Units. Find the area of the triangle whose vertices are (-10, -4), (-8, -1) and (-3, -5) 3. Answer: Area of the triangle $=\frac{1}{2} \begin{cases} x_1 & x_2 & x_3 & x_1 \\ y_1 & y_2 & y_3 & y_1 \end{cases}$ Sq. units. $x_{1} = -10, \quad x_{2} = -8, \quad x_{3} = -1, \quad y_{1} = -4, \quad y_{2} = -1 \quad and \quad y_{3} = -5$ Area of the triangle $= \frac{1}{2} \begin{pmatrix} -10 & -8 & -3 & -10 \\ -4 & -1 & -5 & -4 \end{pmatrix} = \frac{1}{2} \begin{bmatrix} (10 + 40 + 12) - (32 + 3 + 50) \end{bmatrix}$ $= \frac{1}{2} \begin{bmatrix} (62) - (85) \end{bmatrix} = \frac{1}{2} (62 - 85) = \frac{1}{2} (-23) = -11.5$ Area of the triangle = 11.5 Sq. Units. 4. Show that the points P (-1.5, 3), Q (6, -2), R (-3, 4) are collinear. Answer: Area of the triangle $=\frac{1}{2} \begin{cases} x_1 & x_2 & x_3 & x_1 \\ y_1 & y_2 & y_3 & y_1 \end{cases}$ Sq. units. $\begin{aligned} \mathbf{x}_{1} = -\mathbf{1.5}, \quad \mathbf{x}_{2} = \mathbf{6}, \quad \mathbf{x}_{3} = -\mathbf{3}, \quad \mathbf{y}_{1} = \mathbf{3}, \quad \mathbf{y} = -\mathbf{2} \quad and \quad \mathbf{y}_{3} = -\mathbf{3} \\ Area of triangle PQR = \frac{1}{2} \left\{ \begin{array}{c} -1.5 & 6 & -3 & -1.5 \\ 3 & -2 & 4 & 3 \end{array} \right\} \quad = \frac{1}{2} \left[(3 + 24 - 9) - (18 + 6 - 6) \right] \\ &= \frac{1}{2} \left[(18) - (18) \right] \qquad \qquad = \frac{1}{2} (18 - 18) \quad = \frac{1}{2} (0) = 0 \end{aligned}$ Therefore the given points are collinear. Determine whether the points are collinear. (a, b + c), (b, c + a), (c, a + b)5. Area of the triangle $=\frac{1}{2} \begin{cases} x_1 & x_2 & x_3 & x_1 \\ y_1 & y_2 & y_3 & y_1 \end{cases}$ Sq. units. $x_1 = a$, $x_2 = b$, $x_3 = c$, $y_1 = b+c$, $y_2 = c+a$ and $y_3 = a+b$ Area of triangle PQR = $\frac{1}{2} \begin{cases} a & b & c & a \\ b+c & c+a & a+b & b+c \end{cases}$ _____ 10[™] MA THS ------www.kalvikural.com------DSG

$$= \frac{1}{2} [(a(c+a)+b(a+b)+c(b+c)) - (b(b+c)+c(c+a)+a(a+b)] \\= \frac{1}{2} [(ac+a^{2}+ab+b^{2}+bc+c^{2}) - (b^{2}+bc+c^{2}+ac+a^{2}+ab)] \\= \frac{1}{2} (ac+a^{2}+ab+b^{2}+bc+c^{2}-b^{2}-bc-c^{2}-ac-a^{2}-ab) = \frac{1}{2} (0) = 0$$

Therefore the given points are collinear.
6. Determine whether the points are collinear $(-\frac{1}{2}, 3), (-5, 6)$ and $(-8, 8)$
Area of the triangle $= \frac{1}{2} \begin{cases} x_{1} & x_{2} & x_{3} & x_{1} \\ y_{1} & y_{2} & y_{3} & y_{1} \end{cases}$ Sq. units.
 $x_{1} = -\frac{1}{2}, x_{2} = -5, x_{3} = -8, y_{1} = 3, y_{2} = 6$ and $y_{3} = 8$
Area of triangle PQR $= \frac{1}{2} \{ \frac{-1}{2} & -5 & -8 & \frac{-1}{2} \} = \frac{1}{2} (-3 - 40 - 24) - (-15 - 48 - 4)] = \frac{1}{2} [(-67) - (-67)] = \frac{1}{2} (-67 + 67) = \frac{1}{2} (0) = 0$
Therefore the given points are collinear.
7. If the area of the triangle formed by the verticies A $(-1, 2), B(-k, -2)$ and C $(-7, 4)$ (taken in order) is 22 sq. units, find the value of 'k'.
Answer:

~ 58 ~

$$\begin{array}{ll} \textbf{x}_{1} = -1, \ \textbf{x}_{2} = \textbf{k}, \ \textbf{x}_{3} = \textbf{7}, \ \textbf{y}_{1} = \textbf{2}, \ \textbf{y}_{2} = -2 \ and \ \textbf{y}_{3} = \textbf{4} \\ \text{Area of the triangle} & \Rightarrow \frac{1}{2} \begin{pmatrix} x_{1} & x_{2} & x_{3} & x_{1} \\ y_{1} & y_{2} & y_{3} & y_{1} \end{pmatrix} = 22 \ \text{Sq. Units} \\ & \Rightarrow \frac{1}{2} \begin{pmatrix} -1 & k & 7 & -1 \\ 2 & -2 & 4 & 2 \end{pmatrix} = 22 \\ & \Rightarrow \frac{1}{2} [(2 + 4k + 14) - (2k - 14 - 4)] = 22 \\ & \Rightarrow \frac{1}{2} [(16 + 4k) - (-18 + 2k)] = 22 \qquad \Rightarrow \frac{1}{2} [16 + 4k + 18 - 2k] = 22 \\ & \Rightarrow 34 + 2k = 44 \qquad \Rightarrow 2k = 44 - 34 \qquad \Rightarrow 2k = 10 \\ & \Rightarrow k = \frac{10}{2} \qquad \Rightarrow \textbf{k} = \textbf{5} \end{array}$$

8. If the area of the triangle formed by the verticies A (0, 0), B (p, 8) and C (6, 2) (taken in order) is 20 sq. units, find the value of 'p'.
 Answer:

$$\begin{array}{ll} \mathbf{x}_{1} = \mathbf{0}, \ \mathbf{x}_{2} = \mathbf{p}, \ \mathbf{x}_{3} = \mathbf{6}, \ \mathbf{y}_{1} = \mathbf{0}, \ \mathbf{y}_{2} = \mathbf{8} \ and \ \mathbf{y}_{3} = \mathbf{2} \\ \text{Area of the triangle} & \Rightarrow \frac{1}{2} \begin{pmatrix} x_{1} & x_{2} & x_{3} & x_{1} \\ y_{1} & y_{2} & y_{3} & y_{1} \end{pmatrix} & = 20 \ \text{Sq. Units} \\ & \Rightarrow \frac{1}{2} \begin{pmatrix} 0 & p & 6 & 0 \\ 0 & 8 & 2 & 0 \end{pmatrix} & = 20 \\ & \Rightarrow \frac{1}{2} [\ (0 + 2p + 0) - (0 + 48 + 0)] = 20 \\ & \Rightarrow \frac{1}{2} [\ (2p \) - (48)] = 20 & \Rightarrow \frac{1}{2} [\ 2p - 48] = 20 \\ & \Rightarrow 2p - 48 = 40 & \Rightarrow 2P = 40 + 48 & \Rightarrow 2P = 88 \\ & \Rightarrow P = \frac{88}{2} & \Rightarrow P = 44 \end{array}$$

9. If the area of the triangle formed by the verticies A (p, p), B (5, 6) and C (5, -2) (taken in order) is 32 sq. units, find the value of 'p'.
Answer:

$$x_1 = p, x_2 = 5, x_3 = 5, y_1 = p, y_2 = 6 and y_3 = 2$$

 $10^{\text{TM}} MATHS$ MCCHSS DSG

~ 59 ~

= 32 Sa. Units

Area of the triangle $\Rightarrow \frac{1}{2} \begin{cases} x_1 & x_2 & x_3 & x_1 \end{cases}$

$$\Rightarrow \frac{1}{2} \begin{pmatrix} p & 5 & 5 & p \\ p & 6 & -2 & p \end{pmatrix} = 32$$

$$\Rightarrow \frac{1}{2} \begin{pmatrix} (6p - 10 + 5p) - (5p + 30 - 2p) \end{bmatrix} = 32$$

$$\Rightarrow \frac{1}{2} [(11p - 10) - (3p + 30] = 32 \Rightarrow \frac{1}{2} [11p - 10 - 3p - 30] = 32$$

$$\Rightarrow 8p - 40 = 64 \Rightarrow 8p = 64 - 40 \Rightarrow 8p = 104$$

$$\Rightarrow p = \frac{104}{2} \Rightarrow p = 13$$

10. In each of the following, find the value of 'a' for which the given points are collinear (i) (2, 3), (4, a) and (6, -3) (ii) (a, 2 – 2a), (-a + 1, 2a) and (-4 – a, 6 – 2a)

(i) (2, 3), (4, a) and (6, -3) Answer: $x_1 = 2$, $x_2 = 4$, $x_3 = 6$, $y_1 = 3$, $y_2 = a$ and $y_3 = -3$ Are

$$\begin{array}{ll} \text{ea of the triangle} & \Rightarrow \frac{1}{2} \begin{cases} x_1 & x_2 & x_3 & x_1 \\ y_1 & y_2 & y_3 & y_1 \end{cases} & = 0 \text{ Sq. Units} \\ & \Rightarrow \frac{1}{2} \begin{pmatrix} 2 & 4 & 6 & 2 \\ 3 & a & -3 & 3 \end{pmatrix} & = 0 \\ & \Rightarrow \frac{1}{2} [(2a - 12 + 18) - (12 + 6a - 6)] = 0 \\ & \Rightarrow \frac{1}{2} [(2a + 6) - (6 + 6a] = 0 & \Rightarrow \frac{1}{2} [2a + 6 - 6 - 6a] = 0 \\ & \Rightarrow -4a = 0 \\ & \Rightarrow a = \frac{0}{-4} & \Rightarrow a = 0 \end{array}$$

(a, 2-2a), (-a+1, 2a) and (-4-a, 6-2a)(ii) Answer: $x_1 = a$, $x_2 = -a + 1$, $x_3 = -4 - a$, $y_1 = 2 - 2a$, $y_2 = 2a$ and $y_3 = 6 - 2a$ $\Rightarrow \frac{1}{2} \begin{cases} x_1 & x_2 & x_3 & x_1 \\ y_1 & y_2 & y_3 & y_1 \end{cases} = 0 \text{ Sq. Units}$ $\Rightarrow \frac{1}{2} \begin{pmatrix} a & -a+1 & -4-a & a \\ 2-2a & 2a & 6-2a & 2-a \end{cases}$ Area of the triangle (2 - 2a)= 0 $\Rightarrow \frac{1}{2}[(2a^{2} + (-a+1)(6-2a) + (-4-a)(2-2a)) - ((2-2a)(-a+1)+2a(-4-a)+(6-2a)a)] = 0$ $\Rightarrow \frac{1}{2} [(2a^2 - 6a + 2a^2 + 6 - 2a - 8 + 8a - 2a + 2a^2) - (-2a + 2 + 2a^2 - 2a - 8a - 2a^2 + 6a - 2a^2)] = 0$ $\Rightarrow \frac{1}{2} [2a^2 - 6a + 2a^2 + 6 - 2a - 8 + 8a - 2a + 2a^2 + 2a - 2 - 2a^2 + 2a + 8a + 2a^2 - 6a + 2a^2] = 0$ $\Rightarrow \frac{1}{2}[8a^2 + 4a - 4] = 0$ \Rightarrow 8a² + 4a - 4 = 0 $\Rightarrow 2a^2 + a - 1 = 0$ \Rightarrow (2a - 1) (a + 1) =0 $\Rightarrow 2a = 1 \qquad \Rightarrow a = \frac{1}{2}$ $\Rightarrow 2a - 1 = 0$ $\Rightarrow a + 1 = 0$ $\Rightarrow a = -1$

If the points P (-1, -4), Q (b, c) and R (5, -1) are collinear and if 2b + c = 4 then find the 11. values of 'b' and 'c'. Answer: $x_1 = -1$, $x_2 = b$, $x_3 = 5$, $y_1 = -4$, $y_2 = c$ and $y_3 = -1$ 10[™] MA THS

MCCHSS vikural.com

~ 60 ~

Area of the triangle $\Rightarrow \frac{1}{2} \begin{cases} x_1 & x_2 & x_3 & x_1 \\ y_1 & y_2 & y_3 & y_1 \end{cases} = 0$ Sq. Units $\Rightarrow \frac{1}{2} \begin{pmatrix} -1 & b & 5 & -1 \\ -4 & c & -1 & -4 \end{pmatrix} = 0$ $\Rightarrow \frac{1}{2} [(-c - b - 20) - (-4b + 5c + 4)] = 0$ $\Rightarrow \frac{1}{2} [(-c - b - 20 + 4b - 5c - 4] = 0 \Rightarrow \frac{1}{2} [-6c - 3b - 24] = 0$ $\Rightarrow -6c - 3b - 24 = 0 \Rightarrow -6c - 3b = 24$ $\Rightarrow -b - 2c = 7$ ------(1) $\Rightarrow 2b + c = 4$ ------(2) (given) By solving (1) and (2) we get b = 3 and c = -2

12. The floor of a hall is covered with identical tiles which are in the shapes of triangles. One such triangle has verticies at (-3, 2), (-1, -1) and (1, 2). If the floor of the hall is completely covered by 110 tiles, find the area of the floor. Answer:

Vertices of one triangular tile are at (-3, 2)(-1, -1) and (1, 2) $x_1 = -3$, $x_2 = -1$, $x_3 = 1$, $y_1 = 2$, $y_2 = -1$ and $y_3 = 2$ Area of one tile $= \frac{1}{2} \begin{cases} x_1 & x_2 & x_3 & x_1 \\ y_1 & y_2 & y_3 & y_1 \end{cases}$ Sq. units. Area of one tile $= \frac{1}{2} \begin{cases} -3 & -1 & 1 & -3 \\ 2 & -1 & 2 & 2 \end{cases} = \frac{1}{2} [(3-2+2)-(-2-1-6)]$ $= \frac{1}{2} [(3)-(-9)] = \frac{1}{2} (3+9) = \frac{1}{2} (12) = 6$

Therefore area of one tile = 6 sq. units. Since the floor is covered by 110 triangle shaped identical tiles, **Area of floor = 110 x 6 = 660 sq. units.**

13. Find the area of the quadrilateral formed by the points (8, 6), (5, 11), (-5, 12) and (-4, 3)
 Answer:

Area of the triangle $\Rightarrow \frac{1}{2} \begin{cases} x_1 & x_2 & x_3 & x_4 & x_1 \\ y_1 & y_2 & y_3 & y_4 & y_1 \end{cases}$ Sq. Units $x_1 = 8, x_2 = 5, x_3 = -5, x_4 = -4, y_1 = 6, y_2 = 11, y_3 = 12 \text{ and } y_4 = 3$ Area of quadrilateral $= \frac{1}{2} \begin{cases} 8 & 5 & -5 & -4 & 8 \\ 6 & 11 & 12 & 3 & 6 \end{cases}$ $= \frac{1}{2} [(88 + 60 - 15 - 24) - (30 - 55 - 48 + 24)]$ $= \frac{1}{2} [(109) - (-49)]$ $= \frac{1}{2} (109 + 49)$ $= \frac{1}{2} (158)$

A(2,2)

1

0

Therefore area of quadrilateral = 79 sq. units.

14. The given diagram shows a plan for constructing a new Parking loot at a campus. It is estimated that such construction would cost ₹1300 per square feet. What will be the total cost for making the parking lot ? Answer:

The parking lot is a quadrilateral whose vertices are at A(2,2), B(5,5), C(4,9) and D(1,7)

 $x_1 = 2$, $x_2 = 5$, $x_3 = 4$, $x_4 = 1$, $y_1 = 2$, $y_2 = 5$, $y_3 = 9$ and $y_4 = 7$

10[™] MA THS

www.kalvikural.com

Area of the triangle $\Rightarrow \frac{1}{2} \begin{cases} x_1 & x_2 & x_3 & x_4 & x_1 \\ y_1 & y_2 & y_3 & y_4 & y_1 \end{cases}$ Sq. Units Area of quadrilateral $= \frac{1}{2} \begin{cases} 2 & 5 & 4 & 1 & 2 \\ 2 & 5 & 9 & 7 & 2 \end{cases}$ $= \frac{1}{2} [(10 + 45 + 28 + 2) - (10 + 20 + 9 + 14)]$ $= \frac{1}{2} [(85) - (53)]$ $= \frac{1}{2} (85 - 53)$ $= \frac{1}{2} (32)$ = 16

~ 61 ~

Therefore area of parking lot = 16 sq. feets. Construction rate per square feet ₹1300. Therefore total cost for constructing the parking lot = 16 x 1300 = ₹20800

15. Find the area of the quadrilateral whose verticies are at (i) (-9, -2), (-8,-4), (2,2) and (1,-3) (ii) (-9,0), (-8,6), (-1,-2) and (-6,-3)

(i) (-9, -2), (-8,-4), (2,2) and (1,-3)

 $\begin{array}{l} A (-9, -2), B (-8, -4), C (1, -3) and D (2, 2) \\ x_1 = -9, \quad x_2 = -8, \quad x_3 = 1, \quad x_4 = 2, \quad y_1 = -2, \quad y_2 = -4, \quad y_3 = -3 \ and \quad y_4 = 2 \\ Area of the triangle \implies \frac{1}{2} \begin{cases} x_1 & x_2 & x_3 & x_4 & x_1 \\ y_1 & y_2 & y_3 & y_4 & y_1 \end{cases} Sq. \ Units \\ Area of quadrilateral = \frac{1}{2} \begin{cases} -9 & -8 & 1 & 2 & -9 \\ -2 & -4 & -3 & 2 & -2 \end{cases} \\ = \frac{1}{2} [(36 + 24 + 2 - 4) - (16 - 4 - 6 - 18)] \\ = \frac{1}{2} [(58) - (-12)] = \frac{1}{2} (58 + 12) \\ = \frac{1}{2} (70) = 35 \end{array}$

Therefore area of quadrilateral = 35 sq. units.

 $\begin{array}{l} \text{(ii) (-9,0), (-8,6), (-1,-2) and (-6,-3)} \\ A (-8,6), B (-9,0), C (-6,-3) and D (-1,-2) \\ x_1 = -8, \ x_2 = -9, \ x_3 = -6, \ x_4 = -1, \ y_1 = 6, y_2 = 0, \ y_3 = -3 \ and \ y_4 = -2 \\ Area of the triangle \Rightarrow \frac{1}{2} \left\{ \begin{matrix} x_1 & x_2 & x_3 & x_4 & x_1 \\ y_1 & y_2 & y_3 & y_4 & y_1 \end{matrix} \right\} \text{Sq. Units} \\ Area of quadrilateral = \frac{1}{2} \left\{ \begin{matrix} -8 & -9 & -6 & -1 & -8 \\ 6 & 0 & -3 & -2 & 6 \end{matrix} \right\} \\ = \frac{1}{2} [(0 + 27 + 12 - 6) - (-54 + 0 + 3 + 16)] \\ = \frac{1}{2} [(33) - (-35)] = \frac{1}{2} (33 + 35) \\ = \frac{1}{2} (88) = 44 \end{array}$

Therefore area of quadrilateral = 44 sq. units.

16. Find the value of 'k' if the area of quadrilateral is 28 sq. units, whose vertices are (-4,-2), (-3,k), (3, -2) and (2, 3) Answer: Area of the triangle $\Rightarrow \frac{1}{2} \begin{cases} x_1 & x_2 & x_3 & x_4 & x_1 \\ y_1 & y_2 & y_3 & y_4 & y_1 \end{cases}$ Sq. Units $x_1 = -4, x_2 = -3, x_3 = 3, x_4 = 2, y_1 = -2, y_2 = k, y_3 = -2$ and $y_4 = 3$

com

Area of quadrilateral $\Rightarrow \frac{1}{2} \left\{ \begin{array}{ccc} -4 & -3 & 3 & 2 & -4 \\ -2 & k & -2 & 3 & -2 \end{array} \right\} = 28 \text{ sq. units.}$ $\Rightarrow \frac{1}{2} [(-4k+6+9-4)-(6+3k-4-12)] = 28 \text{ sq. units}$ $\Rightarrow \frac{1}{2} [(11-4k)-(3k-10)] = 28$ $\Rightarrow \frac{1}{2} (11-4k-3k+10) = 28$ $\Rightarrow 21-7k = 28 \times 2 \qquad \Rightarrow 21-7k = 56 \qquad \Rightarrow -7k = 56-21$ $\Rightarrow -7k = 35 \qquad \Rightarrow k = \frac{35}{7}$

Therefore k = -5

17. If the points A (-3, 9), B (a, b) and C (4, -5) are collinear and if a + b = 1, then find 'a' and 'b'. Answer:

By solving (1) and (2) we get a = 2 and c = -1

18.In the figure, the quadrilateral swimming pool shown is surrounded by the concretepatio. $p_{(-10,6)}$

Answer:

Required area of the patio = area of portion ABCD – Area of portion EFGH Area of portion ABCD A (-4, -8), B (8, -4), C = (6, 10) and D (-10, 6) x₁ = -4, x₂ = 8, x₃ = 6, x₄ = -10, y₁ = -8, y₂ = -4, y₃ = 10 and y₄ = 6 Area of the triangle $\Rightarrow \frac{1}{2} \begin{cases} x_1 & x_2 & x_3 & x_4 & x_1 \\ y_1 & y_2 & y_3 & y_4 & y_1 \end{cases}$ Sq. Units Area of quadrilateral $= \frac{1}{2} \begin{cases} -4 & 8 & 6 & -10 & -4 \\ -8 & -4 & 10 & 6 & -8 \end{cases}$ $= \frac{1}{2} [(16 + 80 + 36 + 80) - (-64 - 24 - 100 - 24)]$ $= \frac{1}{2} [(212) - (-212)] = \frac{1}{2} (212 + 212)$ $= \frac{1}{2} (424) = 212$ Therefore area of quadrilateral ABCD = 212 sq. units.

Area of portion EFGH E (-3, -5), F (6, -2), G = (3, 7) and H (-6, 4) $x_1 = -3$, $x_2 = 6$, $x_3 = 3$, $x_4 = -6$, $y_1 = -5$, $y_2 = -2$, $y_3 = 7$ and $y_4 = 4$ Area of the triangle $\Rightarrow \frac{1}{2} \begin{cases} x_1 & x_2 & x_3 & x_4 & x_1 \\ y_1 & y_2 & y_3 & y_4 & y_1 \end{cases}$ Sq. Units

Area of quadrilateral $=\frac{1}{2} \begin{cases} -3 & 6 & 3 & -6 & -3 \\ -5 & -2 & 7 & 4 & -5 \end{cases}$ $=\frac{1}{2}[6+42+12+30)-(-30-6-42-12)]$ $=\frac{1}{2}[(90) - (-90)] = \frac{1}{2}(90 + 90)$ $=\frac{1}{2}(180)$ = 90 Therefore area of quadrilateral ABCD = 90 sq. units. area of portion ABCD - Area of portion EFGH Required area of the patio = 212 – 90 = 122 Sq. Units. = 19. A triangular shaped glass with vertices at A (-5, -4), B (1, 6) and C (7, -4) has to bepainted. If one bucket of paint covers 6 square feet, how many buckets of paint will be required to paint the whole glass, if only one coat of paint is applied. Answer: Area of the triangle $=\frac{1}{2} \begin{cases} x_1 & x_2 & x_3 & x_1 \\ y_1 & y_2 & y_3 & y_1 \end{cases}$ Sq. units. $x_1 = -5$, $x_2 = 1$, $x_3 = 7$, $y_1 = -4$, $y_2 = 6$ and $y_3 = -4$ Area of the triangle $= \frac{1}{2} \begin{pmatrix} -5 & 1 & 7 & -5 \\ -4 & 6 & -4 & -4 \end{pmatrix} = \frac{1}{2} [(-30 - 4 - 28) - (-4 + 42 + 20)]$ $= \frac{1}{2} [(-54) - (18)] = \frac{1}{2} (-62 - 58) = \frac{1}{2} (-120) = -60$ Area of the triangle = 60 Sq. Units. (Area can't be - ve) $=\frac{Area of the \Delta given}{Area of the paint can} = \frac{60}{6}$ Number of paint cans required Number of paint cans required = 10 cans In the figure, find area of (i) triangle AGF (ii) triangle FED 20. (iii) Quadrilateral BCEG F(-2,3) D(1,3)Answer: (i) triangle AGF A ((-5, 3), G (-4.5, 0.5) and F (-2, 3) Area of the triangle $=\frac{1}{2} \begin{cases} x_1 & x_2 & x_3 & x_1 \\ y_1 & y_2 & y_3 & y_1 \end{cases}$ Sq. units. E(1.5,1)X'-6 -5 G(-4.5,0.5) B(-4,-2) -2 $x_1 = -5$, $x_2 = -4.5$, $x_3 = -2$, $y_1 = 3$, $y_2 = 0.5$ and $y_3 = 3$ Area of the triangle $= \frac{1}{2} \begin{pmatrix} -5 & -4.5 & -2 & -5 \\ 3 & 0.5 & 3 & 3 \end{pmatrix} = \frac{1}{2} [(-22) - (-29.5)]$ $= \frac{1}{2} (-22 + 29.5) = \frac{1}{2} (7.5) = 3.75$ Area of the triangle AGF = 3.75 Sq. Units. (ii) triangle FED F ((-2, 3), E (1.5, 1) and D (1, 3) Area of the triangle $=\frac{1}{2} \begin{cases} x_1 & x_2 & x_3 & x_1 \\ y_1 & y_2 & y_3 & y_1 \end{cases}$ Sq. units. $\begin{array}{l} \textbf{x}_1 = -2, \quad \textbf{x}_2 = \textbf{1.5}, \quad \textbf{x}_3 = \textbf{1}, \quad \textbf{y}_1 = \textbf{3}, \quad \textbf{y}_2 = \textbf{1} \quad and \quad \textbf{y}_3 = \textbf{3} \\ Area of the triangle & = \frac{1}{2} \begin{pmatrix} -2 & 1.5 & 1 & -2 \\ 3 & 1 & 3 & 3 \end{pmatrix} = \frac{1}{2} [(-2 + 4.5 + 3) - (4.5 + 1 - 6)] \\ & = \frac{1}{2} [(6.5) - (-0.5)] & = \frac{1}{2} (5.5 + .5) = \frac{1}{2} (6) = 3 \end{array}$ Area of the triangle FED = 3 Sq. Units. 10[™] MATHS MCCHSS DSG (iii) Quadrilateral BCEG B (-4, -2), C (2, -1), E (1.5, 1) and G (-4.5, 0.5) $x_1 = -4$, $x_2 = 2$, $x_3 = 1.5$, $x_4 = -4.5$, $y_1 = 2$, $y_2 = -1$, $y_3 = 1$ and $y_4 = 0.5$ Area of the triangle $\Rightarrow \frac{1}{2} \begin{cases} x_1 & x_2 & x_3 & x_4 & x_1 \\ y_1 & y_2 & y_3 & y_4 & y_1 \end{cases}$ Sq. Units Area of quadrilateral $= \frac{1}{2} \begin{cases} -4 & 2 & 1.5 & -4.5 & -4 \\ -2 & -1 & 1 & 0.5 & -2 \end{cases}$ $= \frac{1}{2} [4 + 2 + 0.75 + 9) - (-4 - 1.5 - 4.5 - 2)]$ $= \frac{1}{2} [(15.75) - (-4)] = \frac{1}{2} (15.75 + 12)$ $= \frac{1}{2} (27.75) = 13.875$

Therefore area of quadrilateral BCEG = 13.86 sq. units.

MATRIX

~ 64 ~

1. Consider the following information regaarding the number of men and women in three facatories, I, II and III

Factory	Men	Women	
I	23	18	
11	47	36	
11	15	16	

Represent the above information in the form of matrix. What does the entry in the second row and first column resresent?

Answer:

The information is represented in the form of a 3 x 2 matrix as follows

[23 18]

 $A = \begin{bmatrix} 47 & 36 \\ 15 & 16 \end{bmatrix}$ The entry in the second row and first column represent that there are 47 men workers

in factory II

2. If a matrix has 16 elements, what are the possible orders it can have? Answer:

We know that a matrix of order m x n, has mn elements. Thus to find all possible ordoers of a matrix with 16 elements, we will find all ordered paris of natural numbers whose product is 16. Such ordered pairs are (1, 16), (16, 1), (4, 4), (8, 2) and (2, 8)

Hence the possible orders are 1 x 16, 16 x 1, 4 x 4, 8 x 2, 2 x 8

3. Construct 3 x 3 matrix whose elements are $a_{ij} = i^2 j^2$ Answer:

The g	ieneral 3 x 3 mati	ix is given by	$A = \begin{pmatrix} a_{21} \\ a_{31} \end{pmatrix}$	$\begin{pmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{pmatrix}$	$\Rightarrow a_{ij} = i^2 j^2$	
<i>a</i> 11	$= 1^2 \times 1^2$	= 1 x 1	= 1 a	-2 -2	= 4 x 9 = 36	
a ₁₂	$= 1^2 \times 2^2$	= 1 x 4	= 4 a	$= 3^2 \times 1^2$	$= 9 \times 1 = 9$	
a 13	$= 1^2 \times 3^2$	= 1 x9	= 9 a	$= 3^2 \times 2^2$	= 9 x 4 = 36	
a 21	$=2^2 \times 1^2$	= 4 x 1	= 4 a	$= 3^2 \times 3^2$	= 9 x 9 = 81	
a 22	$=2^2 \times 2^2$	= 4 x 4	= 16			

~ 65 ~ Hence required matrix $A = \begin{pmatrix} 1 & 4 & 9 \\ 4 & 16 & 36 \\ 9 & 36 & 81 \end{pmatrix}$ Find the value of a, b, c, d from the equation $\begin{pmatrix} a-b & 2a+c \\ 2a-b & 3c+d \end{pmatrix} = \begin{pmatrix} 1 & 5 \\ 0 & 2 \end{pmatrix}$ 4. Answer: The given matrices are equal. Thus all corresponding elements are equal. Therefore, a - b = 1 ------ (1) 2a + c = 5 -----(2) 2a - b = 0-----(3) 3c + d = 2 -----(4) $2a - b = 0 \implies 2a = b$ -----(5) (3) gives Put 2a = b in equation (1) $\Rightarrow a - 2a = 1$ $\Rightarrow -a = 1$ $\Rightarrow a = -1$ $\Rightarrow -2 = b \Rightarrow b = -2$ Put a = -1 in equation (5) $\Rightarrow 2(-1) = b$ Put a = -1 in equation (2) $\Rightarrow 2(-1) + c = 5$ $\Rightarrow -2 + c = 5 \Rightarrow c = 5 + 2 \Rightarrow c = 7$ Put c = 7 in equation (4) \Rightarrow 3 (7) + d = 2 $\Rightarrow 21 + d = 2 \Rightarrow d = 2 - 21 \Rightarrow d = -19$ Therefore a = -1, b = -2, c = 7 and d = -19 5. If a matrix has 18 elements, what are the possible orders it can have? What if it has 6 elements? Answer: Given a matrix has 18 elements. The possible orders of the matrix are 18×1 , 1×18 , 9×2 , 2×9 , 6×3 and 3×6 . If the matrix has 6 elements The order are 1 x 6, 6 x 1, 3 x 2, 2 x 3 6. Construct a 3 x 3 matrix whose elements are given by $a_{ii} = |i - 2j|$ Answer: $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$ ⇒a_{ij} = | i – 2j | The general 3 x 3 matrix is given by Hence required matrix $A = \begin{pmatrix} 1 & 3 & 5 \\ 0 & 2 & 4 \\ 0 & 1 & 1 \end{pmatrix}$ If $A = \begin{pmatrix} 5 & 4 & 3 \\ 1 & -7 & 9 \\ 3 & 8 & 2 \end{pmatrix}$ then find the transpose of A7. $A = \begin{pmatrix} 5 & 4 & 3 \\ 1 & -7 & 9 \\ 2 & 0 & 2 \end{pmatrix} \implies A^{T} = \begin{pmatrix} 5 & 1 & 3 \\ 4 & -7 & 8 \\ 2 & 0 & 2 \end{pmatrix}$

10[™] MA THS

DSG

$$\begin{array}{l} & -56 \\ & & \\ 8. \quad if A = \begin{pmatrix} \sqrt{7} & -3 \\ -\sqrt{5} & 2 \\ \sqrt{3} & -5 \end{pmatrix} \text{ then find the transpose of - A} \\ & \text{Answer:} \\ & A = \begin{pmatrix} \sqrt{7} & -3 \\ -\sqrt{5} & 2 \\ \sqrt{3} & -5 \end{pmatrix} \quad \Rightarrow \cdot A = \begin{pmatrix} -\sqrt{7} & 3 \\ \sqrt{5} & -2 \\ -\sqrt{3} & 5 \end{pmatrix} \quad \Rightarrow \cdot A^{T} = \begin{pmatrix} -\sqrt{7} & \sqrt{5} & -\sqrt{3} \\ 3 & -2 & -5 \end{pmatrix} \\ & g & & \\ & & \\ 8 & & 3 & 1 \end{pmatrix} \text{ then verify } (A^{T})^{T} = A \\ & \text{Answer:} \\ & A = \begin{pmatrix} -\sqrt{17} & 0.7 & \frac{5}{2} \\ 8 & 3 & 1 \end{pmatrix} \quad \Rightarrow A^{T} = \begin{pmatrix} 5 & -\sqrt{17} & 8 \\ 2 & 0.7 & 3 \\ 2 & \frac{5}{2} & 1 \end{pmatrix} \quad \Rightarrow (A^{T})^{T} = \begin{pmatrix} -\sqrt{17} & 0.7 & \frac{5}{2} \\ 8 & 3 & 1 \end{pmatrix} = A \\ & & \\$$

DSG

$$\sim 67 \sim$$
Substitute equation (3) in (1)
we get $(x + y + z) = 9 \implies x + 7 = 9 \implies x = 9 - 7 \implies x = 2$
Substitute 'x' and 'y' values in equation (1)
we get $(x + y + z) = 9 \implies 2 + 4 + z = 9 \implies 6 + z = 9 \implies z = 9 - 6 \implies z = 3$
Solution $x = 2, y = 4$ and $z = 3$

11. In the matrix $A = \begin{pmatrix} 8 & 9 & \frac{4}{3} & 3 \\ -1 & \sqrt{7} & \frac{\sqrt{3}}{2} & 5 \\ 1 & 4 & 3 & 0 \\ 6 & 8 & -11 & 1 \end{pmatrix}$
(i) The number of elements (ii) The order of the matrix
(iii) Write the elements of $a_{22}, a_{23}, a_{24}, a_{34}, a_{43}, a_{44}$.
Answer:
(i) A has 4 rows and 4 columns
Therefore number of elements = 4 x 4 = 16
(ii) Order of matrix = 4 x 4
(iii) $a_{22} = \sqrt{7} \quad a_{23} = \frac{\sqrt{3}}{2} \quad a_{24} = 5 \quad a_{34} = 0 \quad a_{43} = -11 \quad a_{44} = 1$
12. If $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}, B = \begin{pmatrix} 1 & 7 & 0 \\ 1 & 3 & 1 \\ 2 & 4 & 0 \end{pmatrix}$, find $A + B$
Answer:
 $A + B = \begin{pmatrix} 1 & 2 & 3 \\ 7 & 8 & 9 \end{pmatrix} + \begin{pmatrix} 1 & 7 & 0 \\ 1 & 3 & 1 \\ 2 & 4 & 0 \end{pmatrix} \implies \begin{pmatrix} 1 + 1 & 2 + 7 & 3 + 0 \\ 4 + 1 & 5 + 3 & 6 + 1 \\ 7 + 2 & 8 + 4 & 9 + 0 \end{pmatrix}$
 $A + B = \begin{pmatrix} 2 & 9 & 3 \\ 5 & 8 & 7 \\ 9 & 12 & 9 \end{pmatrix}$
13. Two examinations were conducted for three groups of students namely group - 1, group

13. Two examinations were conoducted for three groups of students namely group - 1, group - 2, group - 3 and their data on average of marks for the subjects Tamil, English, Science and Mathematics are given below in the form of matrices A and B. Find the total marks of both the examinations for all the three groups.

			glish	Science	Maths		
A =	group 1 group 2 (15	14	23		
A -			62	21	30)		
	group 3 \	53	80	32	40/		
	Та	ımil Eng	glish	Science	Maths		
	group 1 ₍	20	38	15	40 \		
B =	group 1 group 2 (18	12	17	80)		
	group 3 🔪		47	52	18/		
Answ	ver:						
The t	otal marks in bo	th the exan	ninations	for all the ti	nree groups is th	he sum of the giv	en matrices.
	$= \begin{pmatrix} 22 + 20 \\ 50 + 18 \\ 53 + 81 \end{pmatrix}$	15 +	38 14	+ 15	23 + 40		
A + B	=(50+18)	62 +	12 21	+ 17	30 + 80		
	53 + 81	80 +	47 32	2 + 52	40 + 18		
	(42	53	29	63 \			
A + B	$=\begin{pmatrix} 42\\68 \end{pmatrix}$	74	38	110			
	134	_ 127	84	58 / _			
10 [™] MA THS			. .	MCCHSS			D
		WW	v ka	lviku	al com		

14. If
$$A = \begin{pmatrix} 1 & 3 & -2 \\ -3 & 2 & 6 \end{pmatrix} B = \begin{pmatrix} 1 & 8 \\ 3 & 6 \end{pmatrix}$$
, then find $A + B$
Answer:
It is not possible to add A and B because they have different orders.
15. If $A = \begin{pmatrix} 7 & 8 & 6 \\ 1 & 3 & -1 \end{pmatrix} B = \begin{pmatrix} 4 & 11 & -3 \\ -1 & 2 & 4 \end{pmatrix}$ then find $2A + B$
Answer:
 $2A = 2 \begin{pmatrix} 7 & 8 & 6 \\ -4 & 3 & -1 \end{pmatrix} \implies 2A = \begin{pmatrix} 14 & 16 & 12 \\ 2 & 6 & 18 \\ -4 & 3 & -1 \end{pmatrix}$
 $2A + B = \begin{pmatrix} 12 & 26 & 18 \\ 22 & 6 & 18 \end{pmatrix} + \begin{pmatrix} 4 & 11 & -3 \\ -1 & 2 & 4 \end{pmatrix} \implies 2A + B = \begin{pmatrix} 14 + 16 + 11 & 12 - 3 \\ 2 - 1 & 6 + 2 & 18 + 4 \\ -8 & 6 & -2 \end{pmatrix}$
 $2A + B = \begin{pmatrix} 18 & 27 & 9 \\ 2A + B = \begin{pmatrix} 18 & 27 & 9 \\ 2 & 4 & 16 + 2 \end{pmatrix} = \begin{pmatrix} -7 & 4 & -3 \\ 4 & 7 & 5 & 0 \end{pmatrix}$ then find $4A - 3B$
 $A + B = \begin{pmatrix} 1 & 4 & 22 \\ 2 & 4 & 2 \end{pmatrix} = B = \begin{pmatrix} -7 & 4 & -3 \\ 1 & 9 & 4 \end{pmatrix}$
 $A + B = \begin{pmatrix} 1 & 4 & 22 \\ 2 & 4 & 32 \end{pmatrix} = A = \begin{pmatrix} 20 & 16 & -8 \\ 2 & 3 & 4\sqrt{2} \\ 4 & 36 & 16 \end{pmatrix}$
Answer:
 $4A = 4 \begin{pmatrix} 5 & 4 & -2 \\ \frac{1}{2} & \frac{3}{4} & \sqrt{2} \\ 1 & 9 & 4 \end{pmatrix} = A = \begin{pmatrix} 20 & 16 & -8 \\ 2 & 3 & 4\sqrt{2} \\ 4 & 36 & 16 \end{pmatrix} = \begin{pmatrix} -21 & 12 & -9 \\ \frac{3}{4} & \frac{22}{2} & 9 \\ 15 & -18 & 27 \end{pmatrix}$
 $4A - 3B = \begin{pmatrix} 20 & 16 & -8 \\ 2 & 3 & 4\sqrt{2} \\ 4 & 36 & 16 \end{pmatrix} - \begin{pmatrix} -21 & 12 & -9 \\ \frac{3}{4} & \frac{22}{2} & 9 \\ 15 & -18 & 27 \end{pmatrix}$
 $4A - 3B = \begin{pmatrix} 20 & 16 & -8 \\ 2 & 3 & 4\sqrt{2} \\ 4 & 36 & 16 \end{pmatrix} - \begin{pmatrix} -21 & 12 & -9 \\ \frac{3}{4} & \frac{22}{2} & 9 \\ 15 & -18 & 27 \end{pmatrix}$
 $4A - 3B = \begin{pmatrix} 20 & 16 & -8 \\ 2 & 3 & 4\sqrt{2} \\ 4 & 36 & 16 \end{pmatrix} - \begin{pmatrix} -21 & 12 & -9 \\ \frac{3}{4} & \frac{22}{3} & 9 \\ 15 & -18 & 27 \end{pmatrix}$
 $4A - 3B = \begin{pmatrix} 20 + 21 & 16 - 12 & -8 + 9 \\ 2 -\frac{3}{4} & 3 -\frac{21}{4} & 4\sqrt{2} - 9 \\ 4 - 15 & 36 + 18 & 16 - 27 \end{pmatrix}$
 $4A - 3B = \begin{pmatrix} 41 & 4 & 1 \\ \frac{4}{3} & -\frac{15}{2} & 4\sqrt{2} - 9 \\ -11 & 54 & -11 \end{pmatrix}$

~ 68 ~

10[™] MA THS

DSG

17. Find the value of a, b, c, d, x, y from the following matrix equation $\begin{pmatrix} d & 8 \\ 3b & a \end{pmatrix} + \begin{pmatrix} 3 & a \\ -2 & -4 \end{pmatrix} = \begin{pmatrix} 2 & 2a \\ b & 4c \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ -5 & 0 \end{pmatrix}$ Answer: First, we add the two matrices on both left and right hand sides we get $\begin{pmatrix} d+3 & 8+a \\ 3b-2 & a-4 \end{pmatrix} = \begin{pmatrix} 2+0 & 2a+1 \\ b-5 & 4c+0 \end{pmatrix} \implies \begin{pmatrix} d+3 & 8+a \\ 3b-2 & a-4 \end{pmatrix} = \begin{pmatrix} 2 & 2a+1 \\ b-5 & 4c+0 \end{pmatrix}$ Equating the corroesponding elements of the two matrices, we have $\Rightarrow d = 2 - 3$ ⇒d = -1 d + 3 = 28 + a = 2a + 1 $\Rightarrow a - 2a = 1 - 8$ $\Rightarrow -a = -7$ $\Rightarrow a = 7$ 3b-2=b-5 $\Rightarrow 3b-b=-5+2$ $\Rightarrow 2b=-3$ $\Rightarrow b=\frac{-3}{2}$ $\Rightarrow 7-4=4c \quad \Rightarrow 3=4c \qquad c=\frac{3}{4}$ Substituting a = 7 in a - 4 = 4cTherefore a = 7, $b = \frac{-3}{2}$, $c = \frac{3}{4}$ and d = -1 $If A = \begin{pmatrix} 1 & 8 & 3 \\ 3 & 5 & 0 \\ 8 & 7 & 6 \end{pmatrix}, B = \begin{pmatrix} 8 & -6 & -4 \\ 2 & 11 & -3 \\ 0 & 1 & 5 \end{pmatrix}, C = \begin{pmatrix} 5 & 3 & 0 \\ -1 & -7 & 2 \\ 1 & 4 & 3 \end{pmatrix}$ 18. $(ii) \frac{1}{-}A - \frac{3}{-}B$ Compute the following (i) 3A + 2B - C(i) 3A + 2B - C $3A = 3\begin{pmatrix} 1 & 8 & 3 \\ 3 & 5 & 0 \\ 9 & 7 & 6 \end{pmatrix} \qquad \qquad \Rightarrow 3A = \begin{pmatrix} 3 & 24 & 9 \\ 9 & 15 & 0 \\ 24 & 21 & 19 \end{pmatrix}$ $2B = 2 \begin{pmatrix} 8 & -6 & -4 \\ 2 & 11 & -3 \\ 0 & 1 & 5 \end{pmatrix} \Rightarrow 2B = \begin{pmatrix} 16 & -12 & -8 \\ 4 & 22 & -6 \\ 0 & 2 & 10 \end{pmatrix}$ $3A + 2B - C = \begin{pmatrix} 3 & 24 & 9 \\ 9 & 15 & 0 \\ 24 & 21 & 18 \end{pmatrix} + \begin{pmatrix} 16 & -12 & -8 \\ 4 & 22 & -6 \\ 0 & 2 & 10 \end{pmatrix} - \begin{pmatrix} 5 & 3 & 0 \\ -1 & -7 & 2 \\ 1 & 4 & 3 \end{pmatrix}$ $3A + 2B - C = \begin{pmatrix} 3 & 24 & 9 \\ 9 & 15 & 0 \\ 24 & 21 & 10 \end{pmatrix} + \begin{pmatrix} 16 & -12 & -8 \\ 4 & 22 & -6 \\ 0 & -2 & 10 \end{pmatrix} + \begin{pmatrix} -5 & -3 & 0 \\ 1 & 7 & -2 \\ 1 & -4 & -2 \end{pmatrix}$ $3A + 2B - C = \begin{pmatrix} 3+16-5 & 24-12-3 & 9-8+0\\ 9+4+1 & 15+22+7 & 0-6-2\\ 24+0-1 & 21+2-4 & 18+10-3 \end{pmatrix}$ $3A + 2B - C = \begin{pmatrix} 14 & 9 & 1\\ 14 & 44 & -8\\ 23 & 19 & 25 \end{pmatrix}$ If $A = \begin{pmatrix} 1 & 9 \\ 3 & 4 \\ 8 & -3 \end{pmatrix}$, $B = \begin{pmatrix} 5 & 7 \\ 3 & 3 \\ 1 & 0 \end{pmatrix}$ then verify that 19. (i) A + B = B + A(ii) A + (-A) = (-A) + A = 0Answer: (i) A + B = B + A10[™] MA THS MCCHSS vikura

~ 69 ~

DSG

10[™] MA THS

20.

~ 71 ~ From (1) and (2) LHS = RHS Find X and Y if X + y = $\begin{pmatrix} 7 & 0 \\ 3 & 5 \end{pmatrix}$ and X - Y = $\begin{pmatrix} 3 & 0 \\ 0 & A \end{pmatrix}$ 21. Answer: Given $X + Y = \begin{pmatrix} 7 & 0 \\ 3 & 5 \end{pmatrix}$ (1) \Rightarrow X = $\begin{pmatrix} 5 & 0 \\ 3/2 & 9/2 \end{pmatrix}$ $X - Y = \begin{pmatrix} 3 & 0 \\ 0 & 4 \end{pmatrix} \qquad \dots \dots \dots (2) \qquad (1) - (2) \implies 2Y = \begin{pmatrix} 4 & 0 \\ 3 & 1 \end{pmatrix}$ $(1) + (2) \implies 2X = \begin{pmatrix} 10 & 0 \\ 3 & 9 \end{pmatrix}$ \Rightarrow Y = $\begin{pmatrix} 2 & 0 \\ 3/2 & 1/2 \end{pmatrix}$ If $A = \begin{pmatrix} 0 & 4 & 9 \\ 9 & 3 & 7 \end{pmatrix}$, and $B = \begin{pmatrix} 7 & 3 & 8 \\ 1 & 4 & 9 \end{pmatrix}$ then find the value of (i) B - 5A (ii) 3A - 9B22. Answer: (i) B – 5A $5A = 5 \begin{pmatrix} 0 & 4 & 9 \\ 8 & 3 & 7 \end{pmatrix}$ $5A = \begin{pmatrix} 0 & 20 & 45 \\ 40 & 15 & 35 \end{pmatrix}$ $B-5A = \begin{pmatrix} 7 & 3 & 8 \\ 1 & 4 & 9 \end{pmatrix} - \begin{pmatrix} 0 & 20 & 45 \\ 40 & 15 & 35 \end{pmatrix} \implies B-5A = \begin{pmatrix} 7 & 3 & 8 \\ 1 & 4 & 9 \end{pmatrix} + \begin{pmatrix} 0 & -20 & -45 \\ -40 & -15 & -35 \end{pmatrix}$ $B-5A = \begin{pmatrix} 7+0 & 3-20 & 8-45 \\ 1-40 & 4-15 & 9-35 \end{pmatrix}$ $B-5A = \begin{pmatrix} 7 & -17 & -37 \\ -39 & -11 & -26 \end{pmatrix}$ (ii) 3A – 9B $3A = 3\begin{pmatrix} 0 & 4 & 9 \\ 8 & 3 & 7 \end{pmatrix} \quad \Rightarrow 3A = \begin{pmatrix} 0 & 12 & 27 \\ 24 & 9 & 21 \end{pmatrix}$ $9B = 9\begin{pmatrix} 7 & 3 & 8\\ 1 & 4 & 9 \end{pmatrix} \Rightarrow 9B = \begin{pmatrix} 63 & 27 & 72\\ 9 & 36 & 81 \end{pmatrix}$ $3A - 9B = \begin{pmatrix} 0 & 12 & 27 \\ 24 & 9 & 21 \end{pmatrix} - \begin{pmatrix} 63 & 27 & 72 \\ 9 & 36 & 81 \end{pmatrix} \Rightarrow 3A - 9B = \begin{pmatrix} 0 & 12 & 27 \\ 24 & 9 & 21 \end{pmatrix} + \begin{pmatrix} -63 & -27 & -72 \\ -9 & -36 & -81 \end{pmatrix}$ $3A - 9B = \begin{pmatrix} 0 - 63 & 12 - 27 & 27 - 72 \\ 24 - 9 & 9 - 36 & 21 - 81 \end{pmatrix}$ $3A - 9B = \begin{pmatrix} -63 & -15 & -45 \\ 15 & -27 & -60 \end{pmatrix}$ Find the values of x, y, z if (i) $\begin{pmatrix} x-3 & 3x-z \\ x+y+7 & x+y+z \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 6 \end{pmatrix}$ 23. (ii) $(x \ y-z \ z+3) + (y \ 4 \ 3) = (4 \ 8 \ 16)$ Answer : $\begin{pmatrix} x-3 & 3x-z \\ x+y+7 & x+y+z \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 6 \end{pmatrix}$ Equating the corroesponding elements of the two matrices, we have X - 3 = 1 $\Rightarrow x = 1 + 3 \Rightarrow x = 4$ 10[™] MATHS DSG MCCHSS vikural.com

~ 72 ~ 3x - z = 0 $\Rightarrow 3(4) - z = 0$ $\Rightarrow 12 - z = 0$ $\Rightarrow -z = 0 - 12$ $\Rightarrow z = -12$ (by (1)) $x + y + 7 = 1 \implies 4 + y + 7 = 1$ \Rightarrow 11 + y = 1 \Rightarrow y = 1 - 11 ⇒y = -10 x = 4, y = -10 and z = -12(ii) $(x \ y-z \ z+3) + (y \ 4 \ 3) = (4 \ 8 \ 16)$ x + y = 4 -----(1) y - z = 4 -----(2) $z+3+3=16 \implies z+6=16 \implies z=16-6 \implies z=10$ Substitute 'z' value in equation (2) y - 10 = 4 \Rightarrow y = 4 + 10 \Rightarrow y = 14 Substitute 'y' value in equation (1) $x + 14 = 4 \qquad \Rightarrow x = 4 - 14 \Rightarrow x = -10$ x = -10, y = 14 and z = 10Find x and y if $x \begin{pmatrix} 4 \\ -3 \end{pmatrix} + y \begin{pmatrix} -2 \\ 3 \end{pmatrix} = \begin{pmatrix} 4 \\ 6 \end{pmatrix}$ 24. Answer: 4x - 2y = 4 (divided by 2) (1) \Rightarrow 2x - y = 2 2x - y = 2 -----(1) (2) \Rightarrow -x+y=2-3x + 3y = 6 (divided by 3) Adding, -x + y = 2 -----(2) Substitute 'x'value in equation (1) or (2) $2(4) - y = 2 \implies 8 - y = 2 \implies -y = 2 - 8 \implies -y = -6$ v = 6 x = 4 and y = 625. Find the non – zero values of x satisfying the matrix equation $x\begin{pmatrix} 2x & 2\\ 3 & x \end{pmatrix} + 2\begin{pmatrix} 8 & 5x\\ 4 & 4x \end{pmatrix} = 2\begin{pmatrix} x^2 + 8 & 24\\ 10 & 6x \end{pmatrix}$ Answer: Given $x \begin{pmatrix} 2x & 2 \\ 3 & x \end{pmatrix} + 2 \begin{pmatrix} 8 & 5x \\ 4 & 4x \end{pmatrix} = 2 \begin{pmatrix} x^2 + 8 & 24 \\ 10 & 6x \end{pmatrix}$ $\begin{pmatrix} 2x^2 & 2x \\ 3x & x^2 \end{pmatrix} + \begin{pmatrix} 16 & 10x \\ 8 & 8x \end{pmatrix} = \begin{pmatrix} 2x^2 + 16 & 48 \\ 20 & 12x \end{pmatrix} \Rightarrow \begin{pmatrix} 2x^2 + 16 & 2x + 10x \\ 3x + 8 & x^2 + 8x \end{pmatrix} = \begin{pmatrix} 2x^2 + 16 & 48 \\ 20 & 12x \end{pmatrix}$ Equating the corroesponding elements of the two matrices, we have $\Rightarrow 12x = 48 \qquad \Rightarrow x = \frac{48}{12}$ ⇒x = 4 2x + 10x = 48Solve for x, y: $\binom{x^2}{y^2}$ + 2 $\binom{-2x}{-y}$ = $\binom{-5}{8}$ 26. Answer: Given $\binom{x^2}{y^2} + 2\binom{-2x}{y} = \binom{5}{8}$ $x^2 - 4x = 5$ $y^2 - 2y = 8$ ⇒ $\Rightarrow x^2 - 4x - 5 = 0$ $\Rightarrow (x - 5) (x + 1) = 0$ $\Rightarrow y^2 - 2y - 8 = 0$ $\Rightarrow (y - 4) (y + 2) = 0$ $x = 5, -1 \Rightarrow \therefore y = 4, y = -2$ 10[™] MA THS DSG MCCHSS

$$-73^{-1}$$
27. If $A = \begin{pmatrix} 1 & 2 & 0 \\ 3 & 1 & 5 \end{pmatrix}$, $B = \begin{pmatrix} 2 & 3 & 1 \\ 5 & 3 & 1 \end{pmatrix}$, find AB and BA
Answer:
 $AB = \begin{pmatrix} 1 & 2 & 0 \\ 3 & 1 & 5 \end{pmatrix} \times \begin{pmatrix} 8 & 3 & 1 \\ 5 & 3 & 1 \end{pmatrix} \rightarrow AB = \begin{pmatrix} 2 + 4 + 0 & 3 + 8 + 0 & 1 + 2 + 0 \\ 24 + 2 + 25 & 9 + 4 + 15 & 3 + 1 + 5 \end{pmatrix}$
 $AB = \begin{pmatrix} 1 & 2 & 0 \\ 51 & 28 & 9 \end{pmatrix}$
BA does not exist.
28. If $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$, $B = \begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix}$, find AB and BA. Check if AB = BA
Answer:
 $AB = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \times \begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix} \rightarrow AB = \begin{pmatrix} 4 + 1 & 0 + 3 \\ 2 + 3 & 0 + 3 \end{pmatrix} \rightarrow AB = \begin{pmatrix} 5 & 3 \\ 5 & 0 \end{pmatrix} ----(1)$
 $BA = \begin{pmatrix} 2 & 0 \\ 1 & 2 \end{pmatrix} \times \begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix} \rightarrow BA = \begin{pmatrix} 4 + 0 & 2 + 0 \\ 2 + 3 & 1 + 9 \end{pmatrix} \rightarrow BA = \begin{pmatrix} 5 & 2 \\ 5 & 10 \end{pmatrix} ----(2)$
From (1) and (2) AB = BA
29. If $A = \begin{pmatrix} 2 & -2\sqrt{2} \\ \sqrt{2} & 2 \end{pmatrix}$, and $B = \begin{pmatrix} 2 & 2\sqrt{2} \\ -\sqrt{2} & 2 \end{pmatrix}$ show that A and B satisfy commutative property
with respect to matrix multiplication
Answer:
We have show that AB = BA
 $AB = \begin{pmatrix} 2 & -2\sqrt{2} \\ \sqrt{2} & 2 \end{pmatrix} \times \begin{pmatrix} 2 & -2\sqrt{2} \\ \sqrt{2} & 2 \end{pmatrix} \Rightarrow AB = \begin{pmatrix} 4 + 4 & 4\sqrt{2} - 4\sqrt{2} - 4\sqrt{2} \end{pmatrix} \Rightarrow AB = \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix} ---(1)$
 $BA = \begin{pmatrix} 2 & -2\sqrt{2} \\ \sqrt{2} & 2 \end{pmatrix} \times \begin{pmatrix} 2 & -2\sqrt{2} \\ \sqrt{2} & 2 \end{pmatrix} \Rightarrow BA = \begin{pmatrix} 4 + 4 & -4\sqrt{2} - 4\sqrt{2} + 4\sqrt{2} \end{pmatrix} \Rightarrow AB = \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix} ---(2)$
From (1) and (2) AB = BA
30. Solve $\begin{pmatrix} 2 & 1 & 2 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y = \begin{pmatrix} 4 \\ 5 \end{pmatrix}$
Equation the corresponding elements of the two matrices, we have
 $2x+y - 4 - - - - - (1) \qquad x + 2y = 5 - - - (2)$
 $(1) - 2 \times (2)$ gives $2x + y = 4$
 $\frac{2x + 4y = 10}{-3y = -6}$ gives $y = 2$
Substitute Y value in equation (1)
 $2x + 2 = 4 \Rightarrow 2x = 2 \implies 2x = 2 \implies x = 1$
 $x = 1$ and $y = 2$
31. If $A = \begin{pmatrix} -1 & 1 \\ 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 2 \\ 4 \end{pmatrix}$, and $C = \begin{pmatrix} -7 & 0 \\ 3 \end{pmatrix}$ verify that $A (B + C) = AB + AC$
Answer:
 $LM = A (B + C)$

$$= 74^{-2}$$

$$B + C = \begin{pmatrix} 1 & 2 \\ -4 & 2 \end{pmatrix} + \begin{pmatrix} -7 & 6 \\ 3 & 2 \end{pmatrix} \implies B + C = \begin{pmatrix} 1 - 7 & 2 + 6 \\ -4 + 3 & 2 + 2 \end{pmatrix} \implies B + C = \begin{pmatrix} -6 & -1 \\ -1 & 4 \end{pmatrix}$$

$$A (B + C) = \begin{pmatrix} -1 & 1 \\ 1 \end{pmatrix} \times \begin{pmatrix} -6 & 8 \\ -1 & 4 \end{pmatrix} \implies A (B + C) = \begin{pmatrix} -6 & -1 & 8 + 4 \\ 6 & -3 & -8 + 12 \end{pmatrix}$$

$$A (B + C) = \begin{pmatrix} -7 & 12 \\ -1 & 4 \end{pmatrix} \implies AB + AC$$

$$AB = \begin{pmatrix} 1 & 1 \\ -1 & 3 \end{pmatrix} \times \begin{pmatrix} 1 & 2 \\ -4 & 2 \end{pmatrix} \implies AB = \begin{pmatrix} 1 - 4 & 2 + 2 \\ -1 - 12 & -2 + 6 \end{pmatrix} \implies AB = \begin{pmatrix} -3 & 4 \\ -13 & 4 \end{pmatrix}$$

$$AC = \begin{pmatrix} -1 & 3 \\ -1 & 3 \end{pmatrix} \times \begin{pmatrix} -7 & 6 \\ 3 & 2 \end{pmatrix} \implies AC = \begin{pmatrix} -7 + 3 & 6 + 2 \\ -7 + 9 & -6 + 6 \end{pmatrix} \implies AC = \begin{pmatrix} -3 & 4 \\ -13 & 4 \end{pmatrix}$$

$$AB + AC = \begin{pmatrix} -7 & 12 \\ -13 & 4 \end{pmatrix} + \begin{pmatrix} -6 & 8 \\ -6 & 0 \end{pmatrix} \implies AB + AC = \begin{pmatrix} -3 & 4 & +8 \\ -13 & 4 \end{pmatrix} = \begin{pmatrix} -7 & 12 \\ -13 & 4 \end{pmatrix} + \begin{pmatrix} -6 & 8 \\ -16 & 0 \end{pmatrix} \implies AB + AC = \begin{pmatrix} -3 & 4 & +8 \\ -13 & 4 \end{pmatrix} = \begin{pmatrix} -7 & 12 \\ -1 & 4 \end{pmatrix}$$

$$AB + AC = \begin{pmatrix} 2 & -1 \\ -1 & 4 \end{pmatrix} = AB + AC = \begin{pmatrix} 2 & -1 \\ -1 & 4 \end{pmatrix}$$

$$AB + AC = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 2 \end{pmatrix} \implies AB + AC = \begin{pmatrix} -3 & 4 & +8 \\ -13 & 4 & +0 \end{pmatrix}$$

$$AB + AC = \begin{pmatrix} 1 & 2 & -1 \\ -1 & 4 & 2 \end{pmatrix} \implies AB = \begin{pmatrix} 2 & -1 \\ -1 & 4 \\ 0 & 2 \end{pmatrix} \implies AB = \begin{pmatrix} 2 - 2 + 0 & -1 + 8 + 2 \\ -1 - 1 + 8 + 2 \end{pmatrix} \implies AB = \begin{pmatrix} 0 & 9 \\ 5 & -4 \end{pmatrix}$$

$$(AB)^{T} = \begin{pmatrix} 0 & 5 \\ -1 & 4 & 2 \end{pmatrix} \implies A^{T} = \begin{pmatrix} 1 & 2 \\ 2 & -1 \\ 1 & 1 \end{pmatrix} \implies B^{T}A^{T} \begin{pmatrix} 2 -2 + 0 & -1 + 8 + 2 \\ -1 + 8 + 2 & -2 - 4 + 2 \end{pmatrix}$$

$$B^{T}A^{T} = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 4 & 2 \end{pmatrix} \implies A^{T} = \begin{pmatrix} 1 & 2 \\ 2 & -1 \\ 1 & 1 \end{pmatrix} \implies B^{T}A^{T} \begin{pmatrix} 2 -2 + 0 & 4 + 1 + 0 \\ -1 + 8 + 2 & -2 - 4 + 2 \end{pmatrix}$$

$$B^{T}A^{T} = \begin{pmatrix} 0 & 9 \\ -4 & -1 \end{pmatrix} \implies B^{T}A^{T} \begin{pmatrix} 2 -2 + 0 & 4 + 1 + 0 \\ -1 + 8 + 2 & -2 - 4 + 2 \end{pmatrix}$$

$$B^{T}A^{T} = \begin{pmatrix} 0 & 9 \\ -4 & -1 \end{pmatrix} \implies B^{T}A^{T} \begin{pmatrix} 2 -2 + 0 & 4 + 1 + 0 \\ -1 + 8 + 2 & -2 - 4 + 2 \end{pmatrix}$$

$$B^{T}A^{T} = \begin{pmatrix} 0 & 9 \\ -4 & -1 \end{pmatrix} \implies B^{T}A^{T} \begin{pmatrix} 2 -2 + 0 & 4 + 1 + 0 \\ -1 + 8 + 2 & -2 - 4 + 2 \end{pmatrix}$$

$$B^{T}A^{T} = \begin{pmatrix} 0 & 9 \\ -4 & -1 \end{pmatrix} \implies B^{T}A^{T} \begin{pmatrix} 2 -2 + 0 & 4 + 1 + 0 \\ -1 + 8 + 2 & -2 - 4 + 2 \end{pmatrix}$$

$$B^{T}A^{T} = \begin{pmatrix} 0 & 9 \\ -4 & -1 \end{pmatrix} \implies B^{T}A^{T} \begin{pmatrix} 2 -2 + 0 & 4 + 1 + 0 \\ -1 + 8 + 2 & -2 - 4 + 2 \end{pmatrix}$$

$$B^{T}A^{T} = \begin{pmatrix} 0 & 9 \\ -4 & -1 \end{pmatrix} \implies B^{T}A^{T} \begin{pmatrix} 2 -2 + 0 & 4 + 1 + 0 \\ -1 + 8 + 2 & -2 - 4 + 2 \end{pmatrix}$$

$$B^{T}A^{T} = \begin{pmatrix} 0 & 0 \\ 9 & -4 \end{pmatrix} \implies = \begin{pmatrix} -2 & -1 & -1 \\ -1 & -4 \end{pmatrix} \implies B^{T}A^{T} = \begin{pmatrix} -2 & -2 & -4 \\ -1 & -4 \end{pmatrix} \implies B^{T}A^{T} = \begin{pmatrix} -2 &$$

	(i)	(ii)	(iii)	(iv)	(v)
Orders of A	3x3	4x3	4x2	4x5	1x1
Orders of B	3x3	3x2	2x2	5x1	1x3

34. If A is of order p x q and B is of order q x r what is the order AB and BA?

Answer: Given : A is of order $p \ge q$ B is of order $q \ge r$ Therefore order of $AB = (p \ge q) \ge (q \ge r) = p \ge r$ Order of BA is not defined (Number of columns in B & number of rows in A are not equal)

10[™] MA THS

~ 75 ~ 35. A has 'a' rows and 'a + 3 ' columns. B has 'b' rows and '17 – b' columns, and if both products exists, find 'a' and 'b' ? AB and BA Answer: Given Order of A is $a \times (a + 3)$ Order of B is $b \times (17 - b)$ Product AB exist. \Rightarrow a + 3 = b (Number of columns in A = Number of rows in B) $\Rightarrow a - b = -3$ -----(1) Product BA exist \Rightarrow 17 – b = a (Number of columns in B = Number of rows in A) $\Rightarrow a + b = 17$ -----(2) Solving (1) and (2) 2a = 14 $\Rightarrow a = 7$ Substitute 'a' value in (1) $\Rightarrow -b = -3 - 7 \qquad \Rightarrow -b = -10 \Rightarrow b = 10$ \Rightarrow 7-b=-3 *Therefore a = 7 and b = 10* If $A = \begin{pmatrix} 2 & 5 \\ 4 & 3 \end{pmatrix}$, $B = \begin{pmatrix} 1 & -3 \\ 2 & 5 \end{pmatrix}$, find AB and BA. Check if AB = BA 36. $AB = \begin{pmatrix} 2 & 5 \\ 4 & 3 \end{pmatrix} x \begin{pmatrix} 1 & -3 \\ 2 & 5 \end{pmatrix} \Rightarrow AB = \begin{pmatrix} 2+10 & -6+25 \\ 4+6 & -12+15 \end{pmatrix} \Rightarrow AB = \begin{pmatrix} 12 & 19 \\ 10 & 3 \end{pmatrix} - \dots - (1)$ $BA = \begin{pmatrix} 1 & -3 \\ 2 & 5 \end{pmatrix} \times \begin{pmatrix} 2 & 5 \\ 4 & 3 \end{pmatrix} \implies BA = \begin{pmatrix} 2 - 12 & 5 - 9 \\ 4 + 20 & 10 + 15 \end{pmatrix} \implies AB = \begin{pmatrix} -10 & -4 \\ 24 & 25 \end{pmatrix} - \dots - (2)$ From (1) and (2) $AB \neq BA$ If $A = \begin{pmatrix} 1 & 3 \\ 5 & -1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & -1 & 2 \\ 3 & 5 & 2 \end{pmatrix}$, and $C = \begin{pmatrix} 1 & 3 & 2 \\ -4 & 1 & 3 \end{pmatrix}$ verify that A (B + C) = AB + AC 37. Answer: LHS = A(B+C) $B + C = \begin{pmatrix} 1 & -1 & 2 \\ 3 & 5 & 2 \end{pmatrix} + \begin{pmatrix} 1 & 3 & 2 \\ -4 & 1 & 3 \end{pmatrix} \qquad \Rightarrow B + C = \begin{pmatrix} 1 + 1 & -1 + 3 & 2 + 2 \\ 3 - 4 & 5 + 1 & 2 + 3 \end{pmatrix}$ $\Rightarrow B + C = \begin{pmatrix} 2 & 2 & 4 \\ -1 & 6 & 5 \end{pmatrix}$ $A (B + C) = \begin{pmatrix} 1 & 3 \\ 5 & -1 \end{pmatrix} \times \begin{pmatrix} 2 & 2 & 4 \\ -1 & 6 & 5 \end{pmatrix} \qquad \Rightarrow A (B + C) = \begin{pmatrix} 2 - 3 & 2 + 18 & 4 + 15 \\ 10 + 1 & 10 - 6 & 20 - 5 \end{pmatrix}$ $A (B + C) = \begin{pmatrix} -1 & 20 & 19 \\ 11 & 4 & 15 \end{pmatrix} - \dots (1)$ RHS = AB + ACFrom (1) and (2) LHS = RHS 10[™] MA THS MCCHSS DSG lvikural.com

~ 76 ~			
38.	Show that the matrices $A = \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & -2 \\ -3 & 1 \end{pmatrix}$ satisfy commutative property $AB = BA$ Answer: $AB = \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & -2 \\ -3 & 1 \end{pmatrix} \Rightarrow AB = \begin{pmatrix} 1-6 & -2+2 \\ 3-3 & -6+1 \end{pmatrix} \Rightarrow AB = \begin{pmatrix} -5 & 0 \\ 0 & -5 \end{pmatrix}$ (1) $BA = \begin{pmatrix} 1 & -2 \\ -3 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix} \Rightarrow BA = \begin{pmatrix} 1-6 & 2-2 \\ -3+3 & -6+1 \end{pmatrix} \Rightarrow BA = \begin{pmatrix} -5 & 0 \\ 0 & -5 \end{pmatrix}$ (2) From (1) and (2) $AB = BA$		
39.	Let $A = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix}, B = \begin{pmatrix} 4 & 0 \\ 1 & 5 \end{pmatrix}, C = \begin{pmatrix} 2 & 0 \\ 1 & 2 \end{pmatrix}$ Show that (i) $A(BC) = (AB)C$ (ii) $(A - B)C = AC - BC$ (iii) $(A - B)^{T} = A^{T} - B^{T}$ (i) $A(BC) = (AB)C$ Answer: LHS = $A(BC)$ $BC = \begin{pmatrix} 4 & 0 \\ 1 & 5 \end{pmatrix} \times \begin{pmatrix} 2 & 0 \\ 1 & 2 \end{pmatrix} \implies BC = \begin{pmatrix} 8 + 0 & 0 + 0 \\ 2 + 5 & 0 + 10 \end{pmatrix} \implies BC = \begin{pmatrix} 8 & 0 \\ 7 & 10 \end{pmatrix}$ $A(BC) = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} \times \begin{pmatrix} 8 & 0 \\ 7 & 10 \end{pmatrix} \implies A(BC) = \begin{pmatrix} 8 + 14 & 0 + 20 \\ 8 + 21 & 0 + 30 \end{pmatrix} \implies A(BC) = \begin{pmatrix} 22 & 20 \\ 29 & 30 \end{pmatrix}$ (1)		
	RHS: (AB)C $AB = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} \times \begin{pmatrix} 4 & 0 \\ 1 & 5 \end{pmatrix} \Rightarrow AB = \begin{pmatrix} 4+2 & 0+10 \\ 4+3 & 0+15 \end{pmatrix} \Rightarrow AB = \begin{pmatrix} 6 & 10 \\ 7 & 15 \end{pmatrix}$ (AB)C = $\begin{pmatrix} 6 & 10 \\ 7 & 15 \end{pmatrix} \times \begin{pmatrix} 2 & 0 \\ 1 & 2 \end{pmatrix} \Rightarrow (AB)C = \begin{pmatrix} 12+10 & 0+20 \\ 14+15 & 0+30 \end{pmatrix} \Rightarrow (AB)C = \begin{pmatrix} 22 & 20 \\ 29 & 30 \end{pmatrix}$ (2) From (1) and (2) LHS = RHS		
	(ii) $(A - B)C = AC - BC$ Answer: LHS = (A - B)C $A - B = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} - \begin{pmatrix} 4 & 0 \\ 1 & 5 \end{pmatrix} \Rightarrow A - B = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} + \begin{pmatrix} -4 & 0 \\ -1 & -5 \end{pmatrix} \Rightarrow A - B = \begin{pmatrix} 1 - 4 & 2 + 0 \\ 1 - 1 & 3 - 5 \end{pmatrix}$ $A - B = \begin{pmatrix} -3 & 2 \\ 0 & -2 \end{pmatrix}$ $(A - B)C = \begin{pmatrix} -3 & 2 \\ 0 & -2 \end{pmatrix} \times \begin{pmatrix} 2 & 0 \\ 1 & 2 \end{pmatrix} \Rightarrow (A - B)C = \begin{pmatrix} -6 + 2 & 0 + 4 \\ 0 - 2 & 0 - 4 \end{pmatrix}$ $(A - B)C = \begin{pmatrix} -4 & 4 \\ -2 & -4 \end{pmatrix}$ (1)		
	$RHS = AC - BC$ $AC = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} \times \begin{pmatrix} 2 & 0 \\ 1 & 2 \end{pmatrix} \implies AC = \begin{pmatrix} 2+2 & 0+4 \\ 2+3 & 0+6 \end{pmatrix} \implies AC = \begin{pmatrix} 4 & 4 \\ 5 & 6 \end{pmatrix}$ $BC = \begin{pmatrix} 4 & 0 \\ 1 & 5 \end{pmatrix} \times \begin{pmatrix} 2 & 0 \\ 1 & 2 \end{pmatrix} \implies BC = \begin{pmatrix} 8+0 & 0+0 \\ 2+5 & 0+10 \end{pmatrix} \implies BC = \begin{pmatrix} 8 & 0 \\ 7 & 10 \end{pmatrix}$ $AC - BC = \begin{pmatrix} 4 & 4 \\ 5 & 6 \end{pmatrix} - \begin{pmatrix} 8 & 0 \\ 7 & 10 \end{pmatrix} \implies AC - BC = \begin{pmatrix} 4 & 4 \\ 5 & 6 \end{pmatrix} + \begin{pmatrix} -8 & 0 \\ -7 & -10 \end{pmatrix}$ $AC - BC = \begin{pmatrix} 4-8 & 4+0 \\ 5-7 & 6-10 \end{pmatrix} \implies AC - BC = \begin{pmatrix} -4 & 4 \\ -2 & -4 \end{pmatrix} =(1)$ From (1) and (2) LHS = RHS		
10 TH 2	NATHS MCCHSS DSG		

-www.kalvikural.com

$$\begin{aligned} \text{(iii)} (A - B)^{T} = A^{T} - B^{T} \\ \text{Answer:} \\ \text{INS} = (A - B)^{T} \\ A - B = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} - \begin{pmatrix} 4 & 0 \\ 1 & 5 \end{pmatrix} \implies A - B = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} + \begin{pmatrix} -4 & 0 \\ -1 & -5 \end{pmatrix} \implies A - B = \begin{pmatrix} 1 - 4 & 2 + 0 \\ 1 - 1 & 3 - 5 \end{pmatrix} \\ A - B = \begin{pmatrix} -3 & 2 \\ -2 & -2 \end{pmatrix} \\ \text{(A - B)^{T}} = \begin{pmatrix} -3 & 2 \\ -2 & -2 \end{pmatrix} \qquad (1) \\ A^{T} = \begin{pmatrix} 1 & 1 \\ 2 & -2 \end{pmatrix} \implies B^{T} = \begin{pmatrix} 4 & 1 \\ 5 & -2 \end{pmatrix} \\ A^{T} - B^{T} = \begin{pmatrix} 2 & 1 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 4 & 1 \\ 5 & -2 \end{pmatrix} = A^{T} - B^{T} = \begin{pmatrix} 1 - 4 & 1 - 1 \\ 2 + 0 & 3 - 5 \end{pmatrix} \\ A^{T} - B^{T} = \begin{pmatrix} -2 & -2 \\ 2 & -2 \end{pmatrix} \qquad (2) \\ \text{From (1) and (2) IHS = RHS \end{aligned}$$

40. If $A = \begin{pmatrix} \cos \theta & 0 \\ 0 & \cos \theta \end{pmatrix} B = \begin{pmatrix} \sin \theta & 0 \\ 0 & \sin \theta \end{pmatrix} \quad \text{Then show that } A^{2} + B^{2} = I \\ \text{Answer:} \\ A^{2} = \begin{pmatrix} \cos \theta & 0 \\ 0 & \cos \theta \end{pmatrix} B = \begin{pmatrix} \sin \theta & 0 \\ 0 & \cos \theta \end{pmatrix} \implies A^{2} = \begin{pmatrix} \cos^{2} \theta + 0 & 0 + 0 \\ 0 + 0 & 0 + \cos^{2} \theta \end{pmatrix} \\ A^{2} = \begin{pmatrix} \cos^{2} \theta & 0 \\ 0 & \sin \theta \end{pmatrix} \times \begin{pmatrix} \sin \theta & 0 \\ 0 & \sin \theta \end{pmatrix} \implies B^{2} = \begin{pmatrix} \sin^{2} \theta + 0 & 0 + 0 \\ 0 + 0 & 0 + \sin^{2} \theta \end{pmatrix} \\ B^{2} = \begin{pmatrix} \sin^{2} \theta & 0 \\ 0 & \sin^{2} \theta \end{pmatrix} \implies B^{2} = \begin{pmatrix} \sin^{2} \theta + 0 & 0 + 0 \\ 0 + 0 & 0 + \sin^{2} \theta \end{pmatrix} \\ B^{2} = \begin{pmatrix} \sin^{2} \theta & 0 \\ 0 & \sin^{2} \theta \end{pmatrix} \implies B^{2} = \begin{pmatrix} \sin^{2} \theta + 0 & 0 + 1 \\ 0 & 0 & 0 + \sin^{2} \theta \end{pmatrix} \\ A^{2} + B^{2} = \begin{pmatrix} \cos^{2} \theta & \sin \theta \\ 0 & \sin \theta \end{pmatrix} \implies B^{2} = \begin{pmatrix} \sin^{2} \theta + \cos^{2} \theta + \sin^{2} \theta \\ 0 & 0 & \cos^{2} \theta \end{pmatrix} = A^{2} = \begin{pmatrix} \cos^{2} \theta + \sin^{2} \theta \\ 0 & 0 & \cos^{2} \theta + \sin^{2} \theta \end{pmatrix} \\ A^{2} + B^{2} = \begin{pmatrix} \cos^{2} \theta & \sin \theta \\ 0 & \sin^{2} \theta \end{pmatrix} \implies B^{2} = \begin{pmatrix} \sin^{2} \theta + \cos^{2} \theta + \sin^{2} \theta \\ 0 & \cos^{2} \theta + \sin^{2} \theta \end{pmatrix} \\ A^{2} + B^{2} = \begin{pmatrix} \cos^{2} \theta + \sin^{2} \theta \\ \cos^{2} \theta + \sin^{2} \theta \\ \cos^{2} \theta \end{pmatrix} \implies A^{2} = \begin{pmatrix} \cos^{2} \theta + \sin^{2} \theta \\ 0 & \cos^{2} \theta \end{pmatrix} \implies A^{2} = \begin{pmatrix} \cos^{2} \theta + \sin^{2} \theta \\ 0 & \cos^{2} \theta \end{pmatrix} \\ A^{2} + B^{2} = \begin{pmatrix} \cos^{2} \theta + \sin^{2} \theta \\ \cos^{2} \theta \end{pmatrix} \implies A^{2} = \begin{pmatrix} \cos^{2} \theta + \sin^{2} \theta \\ 0 & \cos^{2} \theta \end{pmatrix} \implies A^{2} = \begin{pmatrix} \cos^{2} \theta + \sin^{2} \theta \\ 0 & \cos^{2} \theta \end{pmatrix} = A^{2} = \begin{pmatrix} \cos^{2} \theta + \sin^{2} \theta \\ 0 & \cos^{2} \theta \end{pmatrix}$

$$A^{2} = \begin{pmatrix} \cos^{2} \theta + \sin^{2} \theta \\ \sin^{2} \theta \end{pmatrix} \implies A^{2} = \begin{pmatrix} \cos^{2} \theta + \sin^{2} \theta \\ \sin^{2} \theta \end{pmatrix} \implies A^{2} = \begin{pmatrix} 1 & 0 \\ 0 \end{pmatrix} \implies A^{2} = \begin{pmatrix} 1 & 0 \\ 0 \end{pmatrix} \implies A^{2} = \begin{pmatrix} 1 & 0 \\ 0 \end{pmatrix} \implies A^{2} = \begin{pmatrix} 1 & 0 \\ 0 \end{pmatrix} \implies A^{2} = \begin{pmatrix} 1 & 0 \\ 0 \end{pmatrix} \implies A^{2} = \begin{pmatrix} 1 & 0 \\ 0 \end{pmatrix} \implies A^{2} = \begin{pmatrix} 1 & 0 \\ 0 \end{pmatrix} \implies A^{2} = \begin{pmatrix} 1 & 0 \\ 0 \end{pmatrix} \implies A^{2} = \begin{pmatrix} 1 & 0 \\ 0 \end{pmatrix} \implies A^{2} = \begin{pmatrix} 1 & 0 \\ 0 \end{pmatrix} \implies A^{2}$$

~ 77 ~

Answer:
HIS =
$$A^2 - (a + d)A$$

 $A^2 = A \times A \qquad \Rightarrow \begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} a & b \\ c & d \end{pmatrix} \Rightarrow A^2 = \begin{pmatrix} a^2 + bc & ab + bd \\ ac + cd & ab + bd \end{pmatrix} \qquad (1)$
 $(a + d)A = (a + d) \times \begin{pmatrix} a & b \\ c & d \end{pmatrix} \Rightarrow (a + d)^2 = (a^2 + bc & ab + bd)$
From (1) and (2) we get,
 $A^2 - (a + d)A = \begin{pmatrix} a^2 + bc & ab + bd \\ ac + cd & bc + d^2 \end{pmatrix} - \begin{pmatrix} a^2 + ad & ab + bd \\ ac + cd & ad + d^2 \end{pmatrix}$
 $= \begin{pmatrix} a^2 + bc & ab + bd \\ ac + cd & bc + d^2 \end{pmatrix} - \begin{pmatrix} a^2 - ad & ab + bd \\ -ac - cd & -ad - d^2 \end{pmatrix}$
 $= \begin{pmatrix} a^2 + bc - a^2 - ad & ab + bd - ab - bd \\ ac + cd - ac - cd & bc + d^2 - ad - d^2 \end{pmatrix}$
 $= \begin{pmatrix} bc - ad & 0 \\ 0 & bc - ad \end{pmatrix}$
 $= (bc - ad) I_3$
Therefore LHS RHS
44. If $A = \begin{pmatrix} 5 & 2 & 9 \\ 1 & 2 & 8 \end{pmatrix}$, and $B = \begin{pmatrix} 1 & 7 \\ 5 & -1 \end{pmatrix}$ then show that $(AB)^T = B^TA^T$
Answer:
HIS = $[AB]^T$
 $AB = \begin{pmatrix} 5 & 2 & 9 \\ 1 & 2 & 8 \end{pmatrix} \times \begin{pmatrix} 1 & 7 \\ 5 & -1 \end{pmatrix} \Rightarrow AB = \begin{pmatrix} 5 + 2 + 45 & 35 + 4 - 9 \\ 1 + 2 + 40 & 7 + 4 - 8 \end{pmatrix} \Rightarrow AB = \begin{pmatrix} 52 & 30 \\ 43 & 3 \end{pmatrix}$
 $(AB)^T = \begin{pmatrix} 52 & 43 \\ 2 & -1 \end{pmatrix} \Rightarrow A^T = \begin{pmatrix} 5 & 1 \\ 2 & 9 \\ 8 \end{pmatrix}$
 $B^TA^T = \begin{pmatrix} 1 & 1 & 5 \\ 1 & 2 & -1 \end{pmatrix} \times \begin{pmatrix} 5 & 1 \\ 2 & 9 \\ 8 \end{pmatrix}$
 $B^TA^T = \begin{pmatrix} 1 & 1 & 5 \\ 1 & 2 & -1 \end{pmatrix} \times \begin{pmatrix} 5 & 1 \\ 2 & 9 \\ 8 \end{pmatrix}$
 $B^TA^T = \begin{pmatrix} 1 & 1 & 5 \\ 30 & 3 \end{pmatrix} \longrightarrow (2)$
From (1) and (2) LHS = RHS
45. If $A = \begin{pmatrix} (-3 & 1 \\ 1 & 2 \end{pmatrix}$ show that $A^2 - 5A + 7I_3 = 0$
Answer:
 $A^2 - (a + AA) \Rightarrow A^2 = \begin{pmatrix} -3 & 1 \\ 1 & 2 \end{pmatrix} = A^2 = \begin{pmatrix} -5 & -1 \\ -5 & 10 \end{pmatrix}$
 $ACCHSS$
 $MWWW, kall Viktural. Com$

$$\sim 79 \sim$$

$$7 I_2 = 7 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \implies 7 I_2 = \begin{pmatrix} 7 & 0 \\ 0 & 7 \end{pmatrix}$$

$$A^2 - 5A + 7 I_2 = \begin{pmatrix} 8 & 5 \\ -5 & 3 \end{pmatrix} - \begin{pmatrix} 15 & 5 \\ -5 & 10 \end{pmatrix} + \begin{pmatrix} 7 & 0 \\ 0 & 7 \end{pmatrix}$$

$$A^2 - 5A + 7 I_2 = \begin{pmatrix} 8 - 15 + 7 & 5 - 5 + 0 \\ -5 + 5 + 0 & 3 - 10 + 7 \end{pmatrix}$$

$$A^2 - 5A + 7 I_2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \implies A^2 - 5A + 7 I_2 = 0$$
46. If $A = (1 - 1 - 2)$, $B = \begin{pmatrix} 1 & -1 \\ 2 & 1 \\ 1 & 3 \end{pmatrix}$ and $C = \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix}$ show that $(AB)C = A(BC)$
Answer:
LHS = $(AB)C$

$$AB = (1 - 1 - 2) \times \begin{pmatrix} 1 & -1 \\ 2 & 1 \\ 1 & 3 \end{pmatrix} \implies AB = (1 - 2 + 2 - 1 - 1 + 6) \implies AB = (1 - 4)$$

$$(AB)C = (1 - 4) \times \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix} \implies (AB)C = (1 + 8 - 2 - 4)$$

$$\Rightarrow (AB)C = (9 - 2)$$
--------(1)

$$RHS = A(BC)$$

$$BC = \begin{pmatrix} 1 & -1 \\ 2 & 1 \\ 1 & 3 \end{pmatrix} \times \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix} \implies BC = \begin{pmatrix} 1-2 & 2+1 \\ 2+2 & 4-1 \\ 1+6 & 2-3 \end{pmatrix} \implies BC = \begin{pmatrix} -1 & 3 \\ 4 & 3 \\ 7 & -1 \end{pmatrix}$$

$$A(BC) = (1 -1 2) \times \begin{pmatrix} -1 & 3 \\ 4 & 3 \\ 7 & -1 \end{pmatrix} \implies A(BC) = (-1 - 4 + 14 3 - 3 - 2)$$

$$\implies A(BC) = (9 - 2) - - - - - - - (2)$$
From (1) and (2) LHS = RHS

~ 80 ~

SQUARE ROOT

1. Find the square root of the following expressions

(i) 256 $(x-a)^8(x-b)^4(x-c)^{16}(x-d)^{20}$ (ii) $\frac{144a^8b^{12}c^{16}}{81f^{12}g^4h^{14}}$ Answer: (i) 256 $(x-a)^8(x-b)^4(x-c)^{16}(x-d)^{20}$ Answer: $\sqrt{256(x-a)^8(x-b)^4(x-c)^{16}(x-d)^{20}} = 16/(x-a)^4(x-b)^2(x-c)^8(x-d)^{10}/a^{10}$

(ii)
$$\frac{144a^8b^{12}c^{16}}{81f^{12}g^4h^{14}}$$
Answer:

$$\sqrt{\frac{144a^8b^{12}c^{16}}{81f^{12}g^4h^{14}}} = \frac{12}{9} \left| \frac{a^4b^6c^8}{f^6g^2h^7} \right| = \frac{4}{3} \left| \frac{a^4b^6c^8}{f^6g^2h^7} \right|$$

2. Find the square root of the following expressions. Answer: $\sqrt{16x^2 + 9y^2 - 24xy + 24x - 18y + 9} = \sqrt{(4x)^2 + (-3y)^2 + (3)^2 + 2(4x)(-3y) + 2(-3y)(3) + 2(4x)(3)}$ $= \sqrt{(4x - 3y + 3)^2}$ = |4x - 3y + 3|

(ii) $(6x^2 + x - 1)(3x^2 + 2x - 1)(2x^2 + 3x + 1)$ Answer:

$$\sqrt{(6x^2 + x - 1)(3x^2 + 2x - 1)(2x^2 + 3x + 1)} = \sqrt{(3x - 1)(2x + 1)(3x - 1)(x + 1)(2x + 1)(x + 1)}$$

= $\sqrt{(3x - 1)^2(2x + 1)^2(x + 1)^2}$
= $|(3x - 1)(2x + 1)(x + 1)|$

 $\begin{aligned} \text{(iii)} \Big[\sqrt{15}x^2 + (\sqrt{3} + \sqrt{10})x + \sqrt{2} \Big] \Big[\sqrt{5}x^2 + (2\sqrt{5} + 1)x + 2 \Big] \Big[\sqrt{3}x^2 + (\sqrt{2} + 2\sqrt{3})x + 2\sqrt{2} \Big] \\ \text{Answer:} \\ \sqrt{15}x^2 + (\sqrt{3} + \sqrt{10})x + \sqrt{2} &= \sqrt{15}x^2 + \sqrt{3}x + \sqrt{10}x + \sqrt{2} \\ &= \sqrt{3}x(\sqrt{5}x+1) + \sqrt{2}(\sqrt{5}x+1) \\ &= (\sqrt{5}x+1)(\sqrt{3}x + \sqrt{2}) \\ \sqrt{5}x^2 + (2\sqrt{5} + 1)x + 2 &= \sqrt{5}x^2 + 2\sqrt{5}x + x + 2 \\ &= \sqrt{5}x(x+2) + 1(x+2) \\ &= (x+2)(\sqrt{5}x+1) \\ \sqrt{3}x^2 + (\sqrt{2} + 2\sqrt{3})x + 2\sqrt{2} &= \sqrt{3}x^2 + \sqrt{2}x + 2\sqrt{3}x + 2\sqrt{2} \\ &= x(\sqrt{3}x + \sqrt{2}) + 2(\sqrt{3}x + \sqrt{2}) \\ &= (x+2)(\sqrt{3}x + \sqrt{2}) \\ \sqrt{\left[\sqrt{15}x^2 + (\sqrt{3} + \sqrt{10})x + \sqrt{2}\right] \left[\sqrt{5}x^2 + (2\sqrt{5} + 1)x + 2\right] \left[\sqrt{3}x^2 + (\sqrt{2} + 2\sqrt{3})x + 2\sqrt{2}\right]} \end{aligned}$

MCCHSS

calvikural.

com

~ 81 ~

$$= \sqrt{(\sqrt{5}x+1)(\sqrt{3}x+\sqrt{2})(x+2)(\sqrt{5}x+1)(x+2)(\sqrt{3}x+\sqrt{2})}$$

$$= \sqrt{(\sqrt{5}x+1)^2((\sqrt{3}x+\sqrt{2}))^2(x+2)^2}$$

$$= /(\sqrt{5}x+1)(\sqrt{3}x+\sqrt{2})(x+2)/$$

3. Find the square root of the following rational expressions.

(i) $\frac{400x^4y^{12}c^{16}}{100x^8y^4z^4}$	(ii) $\frac{7x^2 + 2\sqrt{14}x + 2}{x^2 - \frac{1}{2}x + \frac{1}{16}}$	(iii) $\frac{121(a+b)^8(x+y)^8(b-c)^8}{81(b-c)^4(a-b)^{12}(b-c)^4}$
Answer:		
(i) $\frac{400x^4y^{12}c^{16}}{100x^8y^4z^4}$		
Answer		

$$\sqrt{\frac{400x^4y^{12}c^{16}}{100x^8y^4z^4}} = \frac{20|x^2y^6z^8|}{10|x^4y^2z^2|} = 2\left|\frac{y^4z^6}{x^2}\right|$$

(ii)
$$\frac{7x^2 + 2\sqrt{14}x + 2}{x^2 - \frac{1}{2}x + \frac{1}{16}}$$

Answer:

$$\sqrt{\frac{7x^2 + 2\sqrt{14}x + 2}{x^2 - \frac{1}{2}x + \frac{1}{16}}} = \sqrt{\frac{(\sqrt{7}x + 2)(\sqrt{7}x + 2)}{(x - \frac{1}{4})(x - \frac{1}{4})}}$$

$$= \frac{(\sqrt{7}x + 2)}{(x - \frac{1}{4})} = \frac{(\sqrt{7}x + 2)}{\frac{4x - 1}{4}}$$

$$= 4 \left| \frac{(\sqrt{7}x + 2)}{(4x - 1)} \right|$$

(iii) $\frac{121(a+b)^8(x+y)^8(b-c)^8}{81(b-c)^4(a-b)^{12}(b-c)^4}$ Answer:

$$\sqrt{\frac{121(a+b)^8(x+y)^8(b-c)^8}{81(b-c)^4(a-b)^{12}(b-c)^4}} = \left|\frac{11(a+b)^4(x+y)^4(b-c)^4}{9(b-c)^2(a-b)^6(b-c)^2}\right|$$
$$= \frac{11}{9} \left|\frac{(a+b)^4(x+y)^4}{(a-b)^6}\right|$$

4. Find the square root of the following:
(i)
$$4x^2 + 20x + 25$$
 (ii) $9x^2 - 24xy + 30xz - 40yz + 25z^2 + 16y^2$
(iii) $1 + \frac{1}{x^6} + \frac{2}{x^3}$ (iv) $(4x^2 - 9x + 2) (7x^2 - 13x - 2) (28x^2 - 3x - 1)$
(v) $(2x^2 + \frac{17}{6}x + 1) (\frac{3}{2}x^2 + 4x + 2) (\frac{4}{3}x^2 + \frac{11}{3}x + 2)$

10[™] MA THS

-www.kalvikural.com

~ 82 ~

Answer:

(i)
$$4x^2 + 20x + 25$$

 $\sqrt{4x^2 + 20x + 25} = \sqrt{(2x+5)^2} = |2x+5|$

(ii)
$$9x^2 - 24xy + 30xz - 40yz + 25z^2 + 16y^2$$

 $\sqrt{9x^2 + 16y^2 + 25z^2 - 24xy + 30xz - 40yz}$
 $= \sqrt{(3x)^2 + (-4y)^2 + (5z)^2 + 2(4x)(-3y) + 2(-4y)(5z) + 2(5z)(3x)}$
 $= \sqrt{(3x - 4y + 5z)^2}$
 $= |3x - 4y + 5z|$

(iii)
$$1 + \frac{1}{x^6} + \frac{2}{x^3}$$

 $\sqrt{\frac{1}{x^6} + \frac{2}{x^3}}$
 $= \sqrt{1^2 + 2(1)(\frac{1}{x^3}) + (\frac{1}{x^3})^2}$
 $= \sqrt{(1 + \frac{1}{x^3})^2}$
 $= |1 + \frac{1}{x^3}|^2$

(iv)
$$(4x^2 - 9x + 2) (7x^2 - 13x - 2) (28x^2 - 3x - 1) \sqrt{(4x^2 - 9x + 2)(7x^2 - 13x - 2)(28x^2 - 3x - 1)} = \sqrt{(x - 2)(4x - 1)(x - 2)(7x + 1)(4x - 1)(7x + 1)} = \sqrt{(x - 2)^2(4x - 1)^2(7x + 1)^2} = |(x - 2) (4x - 1) (7x + 1)|$$

$$\begin{aligned} \text{(v)} \qquad & \left(2x^2 + \frac{17}{6}x + 1\right)\left(\frac{3}{2}x^2 + 4x + 2\right)\left(\frac{4}{3}x^2 + \frac{11}{3}x + 2\right) \\ & \sqrt{\left(2x^2 + \frac{17}{6}x + 1\right)\left(\frac{3}{2}x^2 + 4x + 2\right)\left(\frac{4}{3}x^2 + \frac{11}{3}x + 2\right)} \\ & = \sqrt{\left(\frac{12x^2 + 17x + 6}{6}\right)\left(\frac{3x^2 + 8x + 4}{2}\right)\left(\frac{4x^2 + 11x + 6}{3}\right)} \\ & = \frac{1}{6}\sqrt{\left(12x^2 + 17x + 6\right)\left(3x^2 + 8x + 4\right)\left(4x^2 + 11x + 6\right)} \\ & = \frac{1}{6}\sqrt{(4x + 3)(3x + 2)(x + 2)(3x + 2)(4x + 3)(x + 2)} \\ & = \frac{1}{6}\sqrt{(4x + 3)^2(3x + 2)^2(x + 2)^2} \\ & = \frac{1}{6}\left((4x + 3)\left((3x + 2)(x + 2)\right)\right) \end{aligned}$$

$$\sim 83 \sim$$
5. Find the square root of the following polynomials by division method.
(i) $x^{4} - 12x^{4} + 42x^{2} - 36x + 9$
 $x^{2} = \frac{x^{2} - 6x}{x^{2}} = \frac{x^{2} - 6x + 3}{x^{2}} = \frac{x^{2} - 6x + 3}{x^{2}} = \frac{x^{2} - 6x}{x^{2} + 3x^{2} + 42x^{2}} = \frac{x^{2}}{x^{2}} = \frac{x^{2} - 6x}{x^{2} + 3x^{2} + 42x^{2}} = \frac{x^{2}}{x^{2}} = \frac{x^{2} - 6x}{x^{2} + 3x^{2}} = \frac{x^{2} - 7x}{x^{2} + 3x^{2} + 42x + 9} = \frac{x^{2} - 7x}{x^{2} + 3x^{2} + 42x + 9} = \frac{x^{2} - 7x}{x^{2} + 42x + 9} = \frac{x^{2} - 7x - 3}{x^{2} + 4x^{2} + 4x^{2} + 4x^{2} + 4x^{2} + 4x^{2} + 4x^{2}$

com

 $(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\} \Rightarrow n(S) = 36$

(i) Let A be the event of getting the sum of outcome values equal to 4

$$A = \{ (1,3), (2,2), (3,1) \} \implies n(A) = 3$$
$$P(A) = \frac{n(A)}{n(S)} = \frac{3}{36} = \frac{1}{12}$$

10[™] MATHS

vikural

DSG

(ii) Let B be the event of getting the sum of outcome values greater than 10

$$B = \{ (5,6), (6,5), (6,6) \} \implies n(B) = 3$$
$$P(B) = \frac{n(B)}{n(S)} = \frac{3}{36} = \frac{1}{12}$$

(iii) Let C be the event op getting the sum of outcomes less than 13.

$$n(C) = n(S) \implies n(C) = 36$$

 $P(C) = \frac{n(C)}{n(S)} = \frac{36}{36} = 1$

4. Two coins are tossed together. What is the probability of getting different faces of the coins ? Answer:

~ 87 ~

When two coins are tossed together, the sample space is

$$S = \{ HH, HT, TH, TT \}$$
 $\Rightarrow n(S) = 4$
Let A be the event of getting different faces on the coins
 $A = \{ HT, TH \}$ $\Rightarrow n(A) = 2$

$$P(A) = \frac{n(A)}{n(S)} = \frac{2}{4} = \frac{1}{2}$$

5. From a well shuffled a pack of 52 cards, one card is drawn at random. Find the probability of getting (i) red card (ii) heart card (iii) red king (iv) face card (v) number card. Answer:

n(S) = 52

(i) Let A be the event of getting a red card

$$n(A) = 13 + 13 \implies n(A) = 26$$

 $P(A) = \frac{n(A)}{n(S)} = \frac{26}{52} = \frac{1}{2}$

(ii) Let B be the event of getting a heart card,

$$n(B) = 13$$

$$P(B) = \frac{n(B)}{n(S)} = \frac{13}{52} = \frac{1}{4}$$

(iii) Let C be the event of getting a red king

$$n(C) = 1 + 1$$
 $\Rightarrow n(C) = 2$
 $P(C) = \frac{n(C)}{n(S)} = \frac{2}{52} = \frac{1}{26}$

(iv) Let D be the event of getting a face card. The face cards are Jack(J), Queen (Q) and King (K)

$$n(D) = 3 + 3 + 3 + 3 \implies n(D) = 12$$

$$P(D) = \frac{n(D)}{n(S)} = \frac{12}{52} = \frac{3}{13}$$

(v) Let E be the event of getting a number card. The number cards are 2, 3, 4, 5, 6, 7, 8, 9, 10.

$$n(E) = 9 + 9 + 9 + 9 \implies n(E) = 36$$
$$P(E) = \frac{n(E)}{n(S)} = \frac{36}{52} = \frac{9}{13}$$

6. What is the probability that leap year selected are random will contain 53 Saturdays. (Hint 366 = 52 x 7 + 2)

Answer:

A leap year has 366 days. So it has 52 full weeks and 2 days. 52 Saturdays must be in 52 full weeks.

The possible chances for the remaining two days will be the sample space.

S = { (sun, Mon), (Mon, Tue), (Tue, Wed), (Wed, Thu), (Thu, Fri), (Fri, Sat), (Sat, Sun)} ⇒ n(S) = 7

Let A be the event of getting 53 Saturdays in a leap year

 $A = \{ (Fri, Sat), (Sat, Sun) \} \implies n(A) = 2$ $\implies P(A) = \frac{n(A)}{n(S)} = \frac{2}{7}$

A die is rolled and a coin is tossed simultaneously. Find the probability that the die shows and odd number and the coin shows a head.

Answer:

7.

8.

 $S = \{ 1H, 1T, 2H, 2T, 3H, 3T, 4H, 4T, 5H, 5T, 6H, 6T \}$ $\Rightarrow n(S) = 12$ Let A be the event of getting an odd number and a head

$$A = \{ 1H, 3H, 5H \} \implies n(A) = .$$

$$P(A) = \frac{n(A)}{n(S)} = \frac{3}{12} = \frac{1}{4}$$

A bag contains 6 green balls, some black and red balls. Number of black balls is twice as the number of red balls. Probability of getting a green ball is thrice the probability of getting a red ball. Find (i) number of black balls (ii) total number of balls. Answer:

Number of green balls is n(G) = 6Let the number of red balls is n(R) = xTherefore, number of black balls is n(B) = 2xTotal number of balls = 6 + x + 2x $\Rightarrow n(S) = 6 + 3x$ Given $\Rightarrow P(G) = 3 P(R)$ $P(G) = 3 P(R) \Rightarrow \frac{n(g)}{n(S)} = 3 \frac{n(R)}{n(S)}$ $\Rightarrow \frac{6}{6+3x} = 3 \frac{x}{6+3x} \Rightarrow 3x = 6 \Rightarrow x = \frac{6}{3} \Rightarrow x = 2$ (i) Number of black balls = 2x $\Rightarrow 2x 2 = 4$

(ii) Total number of balls = n(G) + n(R) + n(B) $\Rightarrow 6 + 2 + 4$ Total number of balls $\Rightarrow n(S) = 12$

9. A game of chance consists of spinning an arrow which is equally likely to come to rest pointing to one of the numbers 1, 2, 3, 4,, 12. What is the probability that it will point to
(i) 7 (ii) a prime number (iii) a composite number ?
Answer:

MCCHSS

Sample space (S) = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 } $\Rightarrow n(S) = 12$ (i) Let A be the event that arrow will come to rest in 7

$$A = \{7\} \qquad \Rightarrow n(A) =$$
$$P(A) = \frac{n(A)}{n(S)} = \frac{1}{12}$$

(ii) Let B be the event that arrow will come to rest in a prime number $B = \{2, 3, 5, 7, 11\} \implies n(B) = 5$

1

10[™] MATHS

<u>com</u>------

$$r = 89 \sim r^{(\beta)} = \frac{n(\beta)}{n(s)} = \frac{5}{12}$$
(iii) Let *b* be the event that arrow ill come to rest in a composite number $C = \{4, 6, 8, 9, 0, 12\} = n(C) = 6$
 $r(C) = \frac{n(C)}{n(s)} = \frac{6}{12} = \frac{1}{2}$
(1). Write the sample space for tossing three coins using tree diagram.
11. Write the sample space for selecting two balls from a bag containing 6 balls numbered 1 to 6.
(using tree diagram).
Answer:
 $S = \{(1,2)(1,3),(1,4),(1,5),(1,6)$
 $(2,1)(2,2),(3,4),(3,5),(3,6)$
 $(4,1),(4,2),(4,3),(4,4),(5,5) = 0$
 $(5,1),(5,2),(5,3),(5,6)$
 $(5,1),(5,2),(5,3),(5,6)$
 $(5,1),(5,2),(5,3),(5,6)$
 $(5,1),(5,2),(5,3),(5,6)$
 $(5,1),(5,2),(5,3),(5,6) = 0$
 $(5,1),(5,2),(5,3),(5,6) = 0$
 $(5,1),(5,2),(5,3),(5,6) = 0$
 $(5,1),(5,2),(5,3),(5,6) = 0$
 $(5,1),(5,2),(5,3),(5,6) = 0$
 $(5,1),(5,2),(5,3),(5,6) = 0$
 $(5,1),(5,2),(5,3),(5,6) = 0$
 $(5,1),(5,2),(5,3),(5,6) = 0$
 $(5,1),(5,2),(5,3),(5,6) = 0$
 $(5,1),(5,2),(5,3),(5,6) = 0$
 $(5,1),(5,2),(5,3),(5,6) = 0$
 $(5,1),(5,2),(5,3),(5,6) = 0$
 $(5,1),(5,2),(5,3),(5,6) = 0$
 $(5,1),(5,2),(5,3),(5,6) = 0$
 $(5,1),(5,2),(5,3),(5,6) = 0$
 $(5,1),(5,2),(5,3),(5,6) = 0$
 $(5,1),(5,2),(5,3),(5,6) = 0$
 $(5,1),(5,2),(5,3),(5,6) = 0$
 $(5,1),(5,2),(5,3),(5,6) = 0$
 $(5,1),(5,2),(5,3),(5,6) = 0$
 $(5,1),(5,2),(5,3),(5,6) = 0$
 $(5,1),(5,2),(5,3),(5,6) = 0$
 $(5,1),(5,2),(5,3),(5,6) = 0$
 $(5,1),(5,2),(5,3),(5,6) = 0$
 $(5,1),(5,2),(5,3),(5,6) = 0$
 $(5,1),(5,2),(5,3),(5,6) = 0$
 $(5,1),(5,2),(5,3),(5,6) = 0$
 $(5,1),(5,2),(5,3),(5,6) = 0$
 $(5,1),(5,2),(5,3),(5,6) = 0$
 $(5,1),(5,2),(5,3),(5,6) = 0$
 $(5,1),(5,2),(5,3),(5,6) = 0$
 $(5,1),(5,2),(5,3),(5,6) = 0$
 $(5,1),(5,2),(5,3),(5,6) = 0$
 $(5,1),(5,2),(5,3),(5,6) = 0$
 $(5,1),(5,2),(5,3),(5,3),(5,6) = 0$
 $(5,1),(5,2),(5,3),(5,3),(5,6) = 0$
 $(5,1),(5,2),(5,3),(5,3),(5,6) = 0$
 $(5,1),(5,2),(5,3),(5,3),(5,3),(5,3) = 0$
 $(5,1),(5,2),(5,3),($

14. At a fete, cards bearing numbers 1 to 1000, one number on one card are put in a box. Each player selects one card at random and that card is not replaced. If the selected card has a perfect square number greater that 500, the player wins a prize. What is the probability that (i) the first player wins a prize (ii) the second player wins a prize, if the first has won? Answer:

(i) Let A be the event of getting perfect squares between 500 and 1000

 $= \{ 23^2, 24^2, 25^2, 25^2, 26^2, 27^2, 28^2, 29^2, 30^2, 31^2 \}$

$$P(A) = 9$$

 $P(A) = \frac{n(A)}{n(S)} = \frac{9}{1000}$

First players wins the prize = $\frac{9}{1000}$

(ii) When the card which was taken first is not replaced.

$$n(S) = 999$$

$$n(B) = 8$$

$$P(B) = \frac{n(B)}{n(S)} = \frac{8}{999}$$

15. A bag contains 12 blue balls and x red balls. If one ball is drawn at random(i) what is the probability that it will be a red ball?

(ii) if 8 more red balls put in the bag, and if the probability of drawing a red ball will be twice that of the probability in (i), then find x.

Answer:

Given n(R) = x, n(B) = 12

Total number of balls in the bag = x + 12 ($x \rightarrow red$, $12 \rightarrow black$) (i) Let A be the event of getting red balls

$$P(A) = \frac{n(A)}{n(S)} = \frac{x}{x+12}$$

(ii) If 8 more red balls are added in the bag $\Rightarrow n(S) = x + 12 + 8 \Rightarrow x + 20$ By the given statement in question

$$\Rightarrow \frac{x+8}{x+20} = 2\left(\frac{x}{x+12}\right) \qquad \Rightarrow \frac{x+8}{x+20} = \left(\frac{2x}{x+12}\right)$$
$$\Rightarrow (x+8)(x+12) = 2x(x+20) \qquad \Rightarrow x^2 + 12x + 8x + 96 = 2x^2 + 40x$$
$$\Rightarrow x^2 20x + 96 = 2x^2 + 40x \qquad \Rightarrow x^2 + 20x + 96 - 2x^2 - 40x = 0$$
$$\Rightarrow -x^2 - 20x + 96 = 0 \qquad \Rightarrow x^2 + 20x - 96 = 0$$
$$\Rightarrow (x+24) (x-4) = 0 \qquad \Rightarrow x = 24 \& 4 (-ve \text{ negligible })$$
$$\Rightarrow Therefore x = 4$$
$$\Rightarrow P(A) = \frac{n(A)}{n(S)} = \frac{x}{x+12} \qquad \Rightarrow P(A) = \frac{4}{4+12} \qquad \Rightarrow P(A) = \frac{4}{16}$$

MCCHSS

<u>calvikural.com</u>

16. Two unbiased dice are rolled once. Find the probability of getting
(i) a doublet (equal numbers on both dice) (ii) the product as a prime number
(iii) the sum as a prime number
(iv) the sum as 1
Answer:

~ 91 ~ S = $\{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)\}$ (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) \Rightarrow n(S) = 36 (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)(i) Let A be the event of getting a doublet $A = \{ (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6) \} \implies n(A) = 6$ $\Rightarrow P(A) = \frac{n(A)}{n(S)} = \frac{6}{36}$ $\Rightarrow P(A) = \frac{1}{c}$ (ii) Let B the event of getting the product as a prime number $B = \{ (1, 2), (1, 3), (1, 5), (2, 1), (3, 1), (5, 1) \}$ \Rightarrow n(B) = 6 $\Rightarrow P(A) = \frac{n(B)}{n(S)} = \frac{6}{36} \qquad \Rightarrow P(A) = \frac{1}{6}$ (iii) Let C be the event of getting the sum of numbers on the dice is prime $C = \{ (1,1), (1,2), (1,4), (1,6), (2,1), (2,3), (2,5), (3,2), (3,4), (4,1), (4,3), (5,2), (5,6), (6,1), (6,5) \}$ $\Rightarrow P(C) = \frac{n(C)}{n(S)} = \frac{15}{36}$ $P(C) = \frac{5}{12}$ (iv) With two dice, minimum sum possible = 2 Therefore probability (sum as 1) = 0 17. Three fair coins are tossed together. Find the probability of getting (i) all heads (ii) atleast one tail (iii) atmost one head (iv) atmost two tails. Answer: Sample Space (S) = { HHH, HHT, HTH, THH, TTT, TTH, THT, HTT } n(S) = 8 (i) Let A be the event of getting all heads. $A = \{ HHH \}$ $\Rightarrow n(A) = 1$ $\Rightarrow P(A) = \frac{n(A)}{n(S)} = \frac{1}{8}$ (ii) Let B be the event of getting atleast one tail B = { HHT, HTH, THH, TTT, TTH, THT, HTT } ⇒n(B) = 7 $\Rightarrow P(B) = \frac{n(B)}{n(S)} = \frac{7}{8}$ (iii) Let C be the event of getting atmost one head. *C* = { *TTT, TTH, THT, HTT* } \Rightarrow n(C) = 4 $P(C) = \frac{n(C)}{n(S)} = \frac{4}{8} = \frac{1}{2}$ (iv) Let D be the event of getting atmost two tails. D = { HHH, HHT, HTH, THH, TTH, THT, HTT } ⇒n(D) = 7 $P(D) = \frac{n(d)}{n(S)} = \frac{7}{8}$

MCCHSS

10TH MA THS

DSG

18. Two dice are numbered 1, 2, 3, 4, 5, 6 and 1,1,2,2, 3,3 respectively. They are rolled and the sum of the numbers on them is noted. Find the probability of getting each sum from 2 to 9 separately.

Answer:

Answ	er:	
S =	{ (1,1),(1,1),(1,2),(1,2),(1,3),(1,3)	
	(2,1),(2,1),(2,2),(2,2),(2,3),(2,3)	
	(3,1),(3,1),(3,2),(3,2),(3,3),(3,3)	
	(4,1),(4,1),(4,2),(4,2),(4,3),(4,3)	
	(5,1),(5,1),(5,2),(5,2),(5,3),(5,3)	
	$(6,1),(6,1),(6,2),(6,2),(6,3),(6,3)\} \Rightarrow n(S) = 36$	
(i)	Let A be the event of getting sum = 2	
	A = { (1, 1), (1, 1)}	\Rightarrow n(A) = 2
	$P(A) = \frac{n(A)}{n(S)} = \frac{2}{36} = \frac{1}{18}$	
(ii)	Let B be the event of getting sum = 3	
	$B = \{ (1, 2), (1, 2), (2, 1), (2, 1) \}$	\Rightarrow n(B) = 4
	$P(B) = \frac{n(B)}{n(S)} = \frac{4}{36} = \frac{1}{9}$	
(:::)		
(iii)	Let C be the event of getting sum = 4 $A = \left(\left(\frac{1}{2} \right) \left(\frac{1}{2}$	
	$A = \{ (1, 3), (1, 3), (2, 2), (2, 2), (3, 1), (3, 1) \}$	\Rightarrow n(C) = 6
	$P(C) = \frac{n(C)}{n(S)} = \frac{6}{36} = \frac{1}{6}$	
(iv)	Let D be the event of getting sum = 5	
(10)	$A = \{ (2, 3), (2, 3), (3, 2), (3, 2), (4, 1), (4, 1) \}$	⇒n(D) = 6
		$\rightarrow n(D)$ 0
	$P(D) = \frac{n(D)}{n(S)} = \frac{6}{36} = \frac{1}{6}$	
(v)	Let E be the event of getting sum = 6	
	$A = \{ (3, 3), (3, 3), (4, 2), (4, 2), (5, 1), (5, 1) \}$	\Rightarrow n(E) = 6
	$P(E) = \frac{n(E)}{n(S)} = \frac{6}{36} = \frac{1}{6}$	
(vi)	Let F be the event of getting sum = 7	
	A = { (4, 3), (4, 3), (5, 2), (5, 2), (6, 1), (6, 1)}	\Rightarrow n(F) = 6
	$P(F) = \frac{n(F)}{n(S)} = \frac{6}{36} = \frac{1}{6}$	
(vii)	Let G be the event of getting sum = 8	
()	A = { (5, 3), (5, 3), (6, 2), (6, 2)}	\Rightarrow n(G) = 4
		,
	$P(G) = \frac{n(G)}{n(S)} = \frac{4}{36} = \frac{1}{9}$	
(viii)	Let H be the event of getting sum = 9	
	A = { (6, 3), (6, 3)}	⇒n(H) = 2
	$P(H) = \frac{n(H)}{n(S)} = \frac{2}{36} = \frac{1}{18}$	
	$n(S) = \frac{1}{36} = \frac{1}{18}$	

10[™] MA THS

-www.kalvikural.com-

DSG

19. A bag contains 5 red balls, 6 white balls, 7 green balls, 8 black balls. One ball is drawn at random from the bag. Find the probability that the ball drawn is (i) white ball (ii) black or red ball (iii) not white (iv) neither white nor black Answer:

Sample space $(S) = 5 + 6 + 7 + 8 \implies n(S) = 26$ (i) Let A be the probability of getting white ball $\Rightarrow n(A) = 6$ $P(A) = \frac{n(A)}{n(S)} = \frac{6}{26} = \frac{3}{13}$ (ii) Let B be the probability of getting Black or Red ball $\Rightarrow n(B) = 8 + 5 = 13$ $P(B) = \frac{n(B)}{n(S)} = \frac{13}{26} = \frac{1}{2}$ (i) Let C be the probability of getting not a white ball $\Rightarrow n(C) = 5 + 7 + 8 = 20$ $P(C) = \frac{n(C)}{n(S)} = \frac{20}{26} = \frac{10}{13}$ (i) Let D be the probability of getting neither white nor black ball $\Rightarrow n(D) = 5 + 7 = 12$ $P(D) = \frac{n(D)}{n(S)} = \frac{12}{26} = \frac{6}{13}$

20. In a box there are 20 non – defective and some defective bulbs. If the probability that a bulb selected at random from the box found to be defective is $\frac{3}{8}$ then, find the number of defective bulbs.

Answer:

Let 'x' be the number of defective bulbs Total number of bulbs= x + 20 $\Rightarrow n(S) = x + 20$ Let A be the event of selecting defective bulbs $= x \Rightarrow n(A) = x$ $\Rightarrow P(A) = \frac{n(A)}{n(S)} = \frac{3}{8} \Rightarrow \frac{x}{x+20} = \frac{3}{8} \Rightarrow 8(x) = 3(x+20)$ $\Rightarrow 8x = 3x + 60 \Rightarrow 8x - 3x = 60 \Rightarrow 5x = 60 \Rightarrow x = \frac{60}{5}$ $\Rightarrow x = 12$ Therefore number of defective bulbs = 12

21. The king and queen of diamonds, queen and jack of hearts, jack and king of spades are removed from a deck of 52 cards and then well shuffled. Now one card is drawn at random from the remaining cards. Determine the probability that the card is (i) a clavor (ii) a queen of red card (iii) a king of black card.

Removed cards: King and Queen of Diamonds, Queen and Jack of Hearts and Jack and King of Spades By the data given $\Rightarrow n(S) = 52 - 2 - 2 - 2 = 46$

MCCHSS

(i) Let A be the event of selecting clavor card $\Rightarrow n(A) = 13$ $\Rightarrow P(A) = \frac{n(A)}{n(S)} = \frac{13}{46}$

(ii) Let B be the event of selecting Queen of red card Queen of diamonds and Heards are removed. $\Rightarrow n(B) = 0$

$$\Rightarrow P(B) = \frac{n(B)}{n(S)} = \frac{0}{46} = 0$$

(iii) Let C be the event of selecting king of black card. King of Spade is removed n(C) = 1

$$\Rightarrow P(C) = \frac{n(C)}{n(S)} = \frac{1}{46}$$

22. Some boys are playing a game, in which the stone thrown by them landing in a circular region (given in the figure) is considered as win and landing other than the circular region is considered as loss. What is the probability to win the game? Answer:

Let A be the probability of win the game = Area of circular region = $\pi r^2 = \pi (1) = \pi sq$. feet $\Rightarrow n(A) = \pi sq$. feet

~ 94 ~

Sample space Area of the rectangular region = $l \times b = 4 \times 3 = 12$ sq. feet $\Rightarrow n(S) \ 12$ sq. feet Probability of win the game $\Rightarrow P(A) = \frac{n(A)}{n(S)} = \frac{\pi}{12} = \frac{3.14}{12} = \frac{3.14 \times 100}{12 \times 100} = \frac{314}{1200}$

$$\Rightarrow P(A) = \frac{157}{600}$$

23. Two customers Priya and Amuthan are visiting a particular shop in the same week (Monday Saturday). Each is equally likely to visit the shop on any one day as on another day. What is the probability that both will visit the shop on

(i) the same day (ii) different days (iii) consecutive days Answer:

Sample space (S) = { Mon, Tue, Wed, Thu, Fri, Sat}
$$\Rightarrow$$
 n(S) = 6

Probability of Priya and Amuthan to visit shop on any day $=\frac{1}{6}$

- (i) Probability that both of them will visit the shop on same day = $6x\frac{1}{6}x\frac{1}{6}=\frac{1}{6}$
- (ii) Probability that both of them will visit the shop on different days = $6x\frac{1}{6}x\frac{5}{6} = \frac{5}{6}$

(III) Probability that both of them will visit the shop on consecutive days $A = \{ (Mon, Tue), (Tue, Wed), (Wed, Thu), (Thu, Fri), (Fri, Sat) \} \implies n(A) = 5$ $\implies P(A) = \frac{n(A)}{n(S)} = \frac{5}{6}$

24. If P(A) = 0.37, P(B) = 0.42, P(A ∩ B) = 0.09 then find P (A U B)
Answer:
Given : P(A) = 0.37, P(B) = 0.42, P(A ∩ B) = 0.09

 $P(AUB) = P(A) + P(B) - P(A \cap B) \implies P(AUB) = 0.37 + 0.42 - 0.09 \implies P(AUB) = 0.70$ $\implies P(AUB) = 0.7$

25. What is the probability of drawing either a king or a queen in a single draw from a well shuffled pack of 52 cards?

MCCHSS

Answer:

Total number of cards = 52 $\Rightarrow n(S) = 52$ Let A be the probability of drawing king cards $\Rightarrow n(A) = 4$

com

$$P(A) = \frac{n(A)}{n(S)} = \frac{4}{52} = \frac{1}{13}$$
Let B be the probability of drawing Queen cards $\Rightarrow n(B) = 4$

$$P(B) = \frac{n(B)}{n(S)} = \frac{4}{52} = \frac{1}{13}$$

$$P(A \cup B) = 0$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) \Rightarrow P(A \cup B) = \frac{1}{13} + \frac{1}{13} - 0$$

$$\Rightarrow P(A \cup B) = \frac{2}{13}$$
Two dice are rolled together. Find the probability of getting a doublet or sum of faces as 4.
Answer:

$$S = \{(1,1), (1,2), (1,3), (1,4), (1,5), (1,6)$$

$$(2,1), (2,2), (2,3), (3,4), (3,5), (3,6)$$

$$(4,1), (4,2), (4,3), (4,4), (4,5), (4,6)$$

$$(5,1), (5,2), (5,3), (5,4), (5,5), (5,6)$$

$$(6,1), (6,2), (6,3), (6,4), (6,5), (6,6)\} \Rightarrow n(S) = 36$$
Let A be the probability of getting doublets

$$A = \{(1,1), (2,2), (3,3), (4,4), (5,5), (6,6)\} \Rightarrow n(A) = 6$$

$$P(A) = \frac{n(A)}{n(S)} = \frac{3}{36}$$
Let B be the probability of getting face sum 4

$$B = \{(1,3), (2,2), (3,1), (4,4), (5,5), (6,6)\} \Rightarrow n(A) = 6$$

$$P(A) = \frac{n(B)}{n(S)} = \frac{3}{36}$$

$$(A \cap B) = \{(2,2)\} \quad n(A \cap B) = 1$$

$$P(A \cup B) = \frac{n(A \cap B)}{n(S)} = \frac{1}{36}$$

$$P(A \cup B) = P(A) \cup P(B) - P(A \cap B) \Rightarrow P(A \cup B) = \frac{4}{36} + \frac{3}{36} - \frac{1}{36}$$

$$P(A \cup B) = \frac{4+3-1}{36} \Rightarrow P(A \cup B) = \frac{4}{36} + \frac{3}{36} - \frac{1}{36}$$
If A and B are two events such that $P(A) = \frac{1}{4}$, $P(B) = \frac{1}{2}$ and $P(A \text{ and } B) = \frac{1}{8}$, find (i) P (A \text{ or } B)
$$P(A \cup B) = P(A) + P(B) - P(A \cap C) \Rightarrow P(A \cup B) = \frac{1}{4} + \frac{1}{2} - \frac{1}{8}$$

$$P(A \cup B) = \frac{2+4-1}{8} \Rightarrow P(A \cup B) = \frac{5}{8}$$
(i) $P(\text{ not A and not B}.$

 $P (not A and not B) = P(\overline{A} \cap \overline{B})$ $\Rightarrow P(\overline{A} \cap \overline{B}) = P(\overline{AUB})$ = 1 - P(AUB)

10[™] MA THS

27.

26.

DSG

$$= 1 - \frac{5}{8} \qquad \Rightarrow P(\bar{A} \cap \bar{B}) = \frac{8 - 5}{8}$$
$$\Rightarrow P(\bar{A} \cap \bar{B}) = \frac{3}{8}$$

28. A card is drawn from a pack of 52 cards. Find the probability of getting a king or heart or a red card.

Answer:

Total number of cards = 52 \Rightarrow n(S) = 52 Let A be the event of getting a king card \Rightarrow n(A) = 4

$$P(A) = \frac{n(A)}{n(S)} = \frac{4}{52}$$

Let B be the event of getting a heart card $\Rightarrow n(B) = 13$

$$P(B) = \frac{n(B)}{n(S)} = \frac{13}{52}$$

Let C be the event of getting a red card $\Rightarrow n(C) = 13 + 13$ $\Rightarrow n(C) = 26$

$$P(C) = \frac{n(c)}{n(S)} = \frac{26}{52}$$

 $(A \cap B)$ = Probability of getting heart king $\Rightarrow n(A \cap B) = 1$

$$P(A \cap B) = \frac{n(A \cap B)}{n(S)} = \frac{1}{52}$$

 $(B \cap C)$ = Probability of getting red and heart \Rightarrow $n(B \cap C)$ = 13 $n(B \cap C)$ 13

$$P(B \cap C) = \frac{n(B \cap C)}{n(S)} = \frac{13}{52}$$

 $(A \cap C)$ = Probability of getting red king $\Rightarrow n(A \cap B) = 2$

$$P(A \cap C) = \frac{n(A \cap C)}{n(S)} = \frac{2}{52}$$

 $(A \cap B \cap C)$ = Probability of getting heart, king which is red) $\Rightarrow n(A \cap B \cap C) = 1$

$$P(A \cap B \cap C) = \frac{n(A \cap B \cap C)}{n(S)} = \frac{1}{52}$$

$$\Rightarrow P(AUBUC) = P(A) + P(B) + P(C) - P(A \cap B) - P(B \cap C) - P(A \cap C) + P(A \cap B \cap C)$$

$$= \frac{4}{52} + \frac{13}{52} + \frac{26}{52} - \frac{1}{52} - \frac{13}{52} - \frac{2}{52} + \frac{1}{52}$$

$$= \frac{4 + 13 + 26 - 1 - 13 - 2 + 1}{52}$$

$$\Rightarrow P(AUBUC) = \frac{28}{52} \qquad \Rightarrow P(AUBUC) = \frac{7}{13}$$

29. In a class of 50 students, 28 opted for NCC, 30 opted for NSS and 18 opted both NCC and NSS. One of the students is selected at random. Find the probability that
(i) The student opted for NCC but not NSS. (ii) The student opted for NSS but not NCC.
(iii) The student opted for exactly one of them.
Answer:
Total number of students n(S) = 50

MCCHSS

kalvikural.com

Let A and B be the events of students opted for NCC and NSS respectively.

 $n(A) = 28 \qquad \Rightarrow P(A) = \frac{n(A)}{n(S)} = \frac{28}{50}$ $n(B) = 30 \qquad \Rightarrow P(B) = \frac{n(B)}{n(S)} = \frac{30}{50}$ $n(A \cap B) = 18 \implies P(A \cap B) = \frac{n(A \cap B)}{n(S)} = \frac{18}{50}$ Probability of the students opted for NCC but not NSS (i) $P(A \cap \overline{B}) = P(A) - P(A \cap B) = \frac{28}{50} - \frac{18}{50} = \frac{28 - 18}{50}$ $=\frac{10}{50}$ $P(A \cap \overline{B}) = \frac{10}{50}$ Probability of the students opted for NSS but not NCC (ii) $P(\bar{A} \cap B) = P(B) - P(A \cap B) = \frac{30}{50} - \frac{18}{50} = \frac{30 - 18}{50} = \frac{12}{50}$ $P(\bar{A} \cap B) = \frac{12}{50}$ Probability of the students opted for exactly one of them. (iii) $P[(A \cap \overline{B})U(\overline{A} \cap B)] = P(A \cap \overline{B}) + P(\overline{A} \cap B) = \frac{10}{50} + \frac{12}{50} = \frac{10+12}{50} = \frac{22}{50}$ $P\left[(A \cap \overline{B})U(\overline{A} \cap B)\right] = \frac{11}{25}$

~ 97 ~

(note that $(A \cap \overline{B}), (\overline{A} \cap B)$ are mutually exclusive events)

30. A and B are two candidates seeking admission to IIT. The probability that A getting selected is 0.5 and the probability that both A and B getting selected is 0.3. Prove that the probability of B being selected is atmost 0.8.

$$\begin{split} P(A) &= 0.5, \qquad P(A \cap B) = 0.3\\ We have P(AUB) \leq 1\\ \Rightarrow P(A) + P(B) - P(A \cap B) \leq 1\\ \Rightarrow 0.5 + P(B) - 0.3 \leq \\ \Rightarrow 0.2 + P(B) \leq 1 \qquad \Rightarrow P(B) \leq 1 - 0.2\\ \Rightarrow P(B) \leq 0.8\\ Therefore, probability of B getting selected is atmost 0.8 \end{split}$$

31. If
$$P(A) = \frac{2}{3}$$
, $P(B) = \frac{2}{5}$, $P(AUB) = \frac{1}{3}$ then find P ($A \cap B$)
Answer:

$P(AUB) = P(A) + P(B) - P(A \cap B)$	$\Rightarrow \frac{1}{3} = \frac{2}{3} + \frac{2}{5} - P(A \cap B)$
$\Rightarrow -P(A \cap B) = \frac{1}{3} - \frac{2}{3} - \frac{2}{5}$	$\Rightarrow P(A \cap B) = -\frac{1}{3} + \frac{2}{3} + \frac{2}{5}$
$\Rightarrow P(A \cap B) = \frac{-5 + 10 + 6}{15}$	$\Rightarrow P(A \cap B) = \frac{11}{15}$

32. A and B are two events such that, P(A) = 0.42, P(B) = 0.48 and $P(A \cap B) = 0.16$. Find (i) P(not A) (ii) P(not B) (iii) P(A or B)Answer:

MCCHSS

kalvikural.com

Given : P(A) = 0.42, P(B) = 0.48 and $P(A \cap B) = 0.16$.

10[™] MA THS

DSG

(i) $P(\text{ not } A) = P(\overline{A}) = 1 - P(A)$ = 1 - 0.42 = 0.58(ii) $P(\text{ not } B) = P(\overline{B}) = 1 - P(B)$ = 1 - 0.48 = 0.52(iii) $P(A \text{ or } B) = P(AUB) = P(A) + P(B) - P(A \cap B)$ = 0.42 + 0.48 - 0.16= 0.74

33. If A and B are two mutually exclusive events of a random experiment and P (not A) = 0.45,
 P (A U B) = 0.65, then find P(B)
 Answer:

Given : P (not A) = 0.45, P (A U B) = 0.65 A and B are mutually exclusive $\Rightarrow P(A \cap B) = 0$ $\Rightarrow P(A) = 1 - P(\overline{A}) \qquad \Rightarrow P(A) = 1 - 0.45$ $\Rightarrow P(A) = 0.55$ $\Rightarrow P(AUB) = P(A) + P(B) - P(A \cap B) \qquad \Rightarrow 0.65 = 0.55 + P(B) - 0$ $\Rightarrow P(B) = 0.65 - 0.55 \qquad \Rightarrow P(B) = 0.10$ $\Rightarrow P(B) = 0.1$

34. The probability that atleast one of A or B occur is 0.6. If A and B occur simultaneouosly with probability 0.2, then find $P(\overline{A}) + P(\overline{B})$.

Answer:

Given : P(AUB) = 0.6, $P(A \cap B) = 0.2$ $P(\overline{A}) + P(\overline{B}) = [1 - P(AUB)] + [1 - P(A \cap B)]$ = (1 - 0.6) + (1 - 0.2) = 0.4 + 0.8= 1.2

35. The proabability of happening of an event A is 0.5 and that of B is 0.3. If A and B are mutually exclusive events, then find the probability that neither A nor B happen. Answer:

Given : P(A) = 0.5, P(B) = 0.3 $\Rightarrow P(AUB) = P(A) + P(B) - P(A \cap B) \Rightarrow P(AUB) = 0.5 + 0.3 + 0$ $\Rightarrow P(AUB) = 0.8$ Probability that neither A nor B $\Rightarrow P(\overline{AUB}) = 1 - P(AUB)$ $\Rightarrow P(\overline{AUB}) = 1 - 0.8$ $\Rightarrow P(\overline{AUB}) = 0.2$ Probability that neither A nor B is 0.2

10[™] MA THS

36. Two dice are rolled once. Find the probability of getting an even number on the first die or a total of face sum 8. Answer:

S = $\{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)\}$ (3,1),(3,2),(3,3),(3,4),(3,5),(3,6), (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) $(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\} \Rightarrow n(S) = 36$

Let A be the event of getting even number on the 1st die

A = $\{(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)\}$ (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) (6,1), (6,2), (6,3), (6,4), (6,5), (6,6) $\Rightarrow n(A) = 18$ $P(A) = \frac{n(A)}{n(S)} = \frac{18}{36}$ Let B be the probability of getting face sum 8 = {(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)} В \Rightarrow n(B) = 5 $P(B) = \frac{n(B)}{n(S)} = \frac{5}{36}$ $(A \cap B) = \{ (2, 6), (4, 4), (6, 2) \}$ \Rightarrow n(A \cap B) = 3 $P(A \cap B) = \frac{n(A \cap B)}{n(S)} = \frac{3}{36}$

$$P(AUB) = P(A) + P(B) - P(A \cap C) \implies P(AUB) = \frac{18}{36} + \frac{5}{36} - \frac{3}{36}$$
$$P(AUB) = \frac{18 + 5 - 3}{36} \implies P(AUB) = \frac{20}{36} \implies P(AUB) = \frac{5}{9}$$

From a well – shuffled pack of 52 cards, a card is drawn at random. Find the probability of it 37. being either a red king or a black queen.

Answer:

Total number of cards = 52 $\Rightarrow n(S) = 52$ Let A be the probability of drawing red king cards $\Rightarrow n(A) = 2$

$$P(A) = \frac{n(A)}{n(S)} = \frac{2}{52} = \frac{2}{52}$$

Let B be the probability of drawing black Queen cards \Rightarrow n(B) = 2

$$P(B) = \frac{n(B)}{n(S)} = \frac{2}{52} = \frac{2}{52}$$
$$P(A \cap B = 0$$

$$P(AUB) = P(A) + P(B) - P(A \cap B) \qquad \Rightarrow \qquad P(AUB) = \frac{2}{52} + \frac{2}{52} - 0$$
$$\Rightarrow \qquad P(AUB) = \frac{2+2}{52}$$
$$\Rightarrow \qquad P(AUB) = \frac{4}{52} \qquad \Rightarrow \qquad P(AUB) = \frac{1}{13}$$

38. A box contains cards numbered 3, 5, 7, 9,, 35, 37. A card is drawn at random from the box. Find the probability that the drawn card have either multiples of 7 or a prime number. Answer:

MCCHSS vikura

 $S = \{3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37\} \Rightarrow n(S) = 18$

DSG

 $\sim 100 \sim$

Let A be the event of multiples of 7 cards = { 7, 21, 35 } $\Rightarrow n(A) = 3$

$$P(A) = \frac{n(A)}{n(S)} = \frac{3}{18}$$

Let B be the event of prime number cards = { 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37 } \Rightarrow n(B) = 11

$$P(B) = \frac{n(B)}{n(S)} = \frac{11}{18}$$

$$(A \cap B) = \{7\} \quad n(A \cap B) = 1$$

$$P(A \cap B) = \frac{n(A \cap B)}{n(S)} = \frac{1}{18}$$

$$P(AUB) = P(A) + P(B) - P(A \cap B) \qquad \Rightarrow \qquad P(AUB) = \frac{3}{18} + \frac{11}{18} - \frac{1}{18}$$

$$\Rightarrow \qquad P(AUB) = \frac{3+11-1}{18}$$

$$\Rightarrow \qquad P(AUB) = \frac{13}{18}$$

39. Three unbiased coins are tossed once. Find the probability of getting atmost 2 tails or atleast 2 heads.

Answer:

Sample Space (S) = { HHH, HHT, HTH, THH, TTT, TTH, THT, HTT } n(S) = 8Let A be the event of getting atmost 2 tails. $A = \{ HHH, HHT, HTH, THH, THT, HTT \} \implies n(A) = 7$ $\Rightarrow P(A) = \frac{n(A)}{n(S)} = \frac{7}{8}$ Let B be the event of getting atleast 2 heads $B = \{ HHH, HHT, HTH, THH \} \implies n(B) = 4$ $\Rightarrow P(B) = \frac{n(B)}{n(S)} = \frac{4}{8}$ $(A \cap B) = \{ HHH, HHT, HTH, THH \} \implies n(A \cap B) = 4$ $\Rightarrow P(A \cap B) = \frac{n(A \cap B)}{n(S)} = \frac{4}{8}$ $P(A \cup B) = P(A) + P(B) - P(A \cap B) \implies P(A \cup B) = \frac{7}{8} + \frac{4}{8} - \frac{4}{8}$ $\Rightarrow P(A \cup B) = \frac{7}{8} + \frac{4}{8} - \frac{4}{8}$ $\Rightarrow P(A \cup B) = \frac{7}{8} + \frac{4}{8} - \frac{4}{8}$

40. The probability that a person will get an electrification contract is $\frac{3}{5}$ and the probability that he will not get plumbing contract $\frac{5}{8}$. The probability of getting atleast one contract is $\frac{5}{7}$. What is the probability that he will get both? Answer:

$$Given : P(A) = \frac{3}{5}, P(\overline{B}) = \frac{5}{8}, P(AUB) = \frac{5}{7}$$

$$P(\overline{B}) = \frac{5}{8} \implies P(B) = 1 - P(\overline{B}) \implies P(B) = 1 - \frac{5}{8} \implies P(B) = \frac{8-5}{8}$$

$$10^{TH} MATHS \qquad MCCHSS$$

$$\Rightarrow P(B) = \frac{3}{8}$$

$$P(AUB) = P(A) + P(B) - P(A \cap B) \Rightarrow P(AUB) = \frac{3}{5} + \frac{3}{8} - \frac{5}{7}$$

$$\Rightarrow P(AUB) = \frac{168 + 105 - 200}{280}$$

$$\Rightarrow P(AUB) = \frac{73}{280}$$
Therefore probability of getting both offer = $\frac{73}{280}$

41. In a town of 8000 people, 1300 are over 50 years and 3000 are females. It is known that 30% of the females are over 50 years. What is the probability that a chosen individual from the town is either a female or over 50 years?

Answer: n(S) = 8000,

 $A = Over 50 \ years \qquad \Rightarrow n(A) = 1300$ $B = Females \qquad \Rightarrow n(B) = 3000$ $A \cap B = 30\% \ of females \qquad \Rightarrow n(A \cap B) = \frac{30}{100} \times 3000 \qquad \Rightarrow n(A \cap B) = 30 \times 30$ $\Rightarrow n(A \cap B) = 900$ $\Rightarrow P(A) = \frac{n(A)}{n(S)} = \frac{1300}{8000}$ $\Rightarrow P(A) = \frac{n(B)}{n(S)} = \frac{3000}{8000}$ $\Rightarrow P(A \cap B) = \frac{n(A \cap B)}{n(S)} = \frac{900}{8000}$ $P(A \cup B) = P(A) + P(B) - P(A \cap B) \qquad \Rightarrow P(A \cup B) = \frac{1300}{8000} + \frac{3000}{8000} - \frac{900}{8000}$ $\Rightarrow P(A \cup B) = \frac{1300 + 3000 - 900}{8000}$ $\Rightarrow P(A \cup B) = \frac{3400}{8000} \Rightarrow P(A \cup B) = \frac{3400}{8000} \Rightarrow P(A \cup B) = \frac{34}{80}$

42. A coin is tossed thrice. Find the probability of getting exactly two heads or at least one tail or two consecutive heads.

MCCHSS

kalvikural.com-----

Answer:

Sample Space (S)= { HHH, HHT, HTH, THH, TTT, TTH, THT, HTT }
n(S)= 8Let A be the event of getting exactly 2 heads.
 $A = \{ HHT, HTH, THH \}$ $\Rightarrow n(A) = 3$

$$\Rightarrow P(A) = \frac{n(A)}{n(S)} = \frac{3}{8}$$

Let B be the event of getting atleast one tail

 $B = \{HHT, HTH, THH, TTT, TTH, THT, HTT \} \implies n(B) = 7$

$$\Rightarrow P(B) = \frac{n(B)}{n(S)} = \frac{7}{8}$$
Let C be the event of getting two consecutive heads
$$C = \{HHT, THH, HHH\} \Rightarrow n(B) = 3$$

$$\Rightarrow P(C) = \frac{n(C)}{n(S)} = \frac{3}{8}$$

$$(A \cap B) = \{HHT, HTH, THH\} \Rightarrow n(A \cap B) = 3$$

$$P(A \cap B) = \frac{n(A \cap B)}{n(S)} = \frac{3}{8}$$

$$(B \cap C) = \{HHT, THH\} \Rightarrow n(B \cap C) = 2$$

$$P(B \cap C) = \frac{n(B \cap C)}{n(S)} = \frac{2}{8}$$

$$(A \cap C) = \{HHT, THH\} \Rightarrow n(A \cap C) = 2$$

$$P(A \cap C) = \frac{n(A \cap C)}{n(S)} = \frac{2}{8}$$

$$(A \cap B \cap C) = \{HHT, THH\} \Rightarrow n(A \cap B \cap C) = 2$$

$$P(A \cap C) = \{HHT, THH\} \Rightarrow n(A \cap B \cap C) = 2$$

$$P(A \cap B \cap C) = \{HHT, THH\} \Rightarrow n(A \cap B \cap C) = 2$$

$$P(A \cap B \cap C) = \{HHT, THH\} \Rightarrow n(A \cap B \cap C) = 2$$

$$P(A \cap B \cap C) = \{HHT, THH\} \Rightarrow n(A \cap B \cap C) = 2$$

$$P(A \cap B \cap C) = P(A) + P(B) + P(C) - P(A \cap B) - P(B \cap C) - P(A \cap C) + P(A \cap B \cap C)$$

$$= \frac{3}{8} + \frac{7}{8} + \frac{3}{8} - \frac{3}{8} - \frac{2}{8} + \frac{2}{8} + \frac{2}{8}$$

$$\Rightarrow P(AUBUC) = P(A) + P(B) + P(C) - P(A \cap B) - P(B \cap C) - P(A \cap C) + P(A \cap B \cap C)$$

$$= \frac{3}{8} + \frac{7}{8} + \frac{3}{8} - \frac{3}{8} - \frac{2}{8} + \frac{2}{8}$$

$$\Rightarrow P(AUBUC) = \frac{8}{8} \Rightarrow P(AUBUC) = 1$$

~ 102 ~

43. If A, B, C are any three events such that probability of B is twice as that of probability of A and B probability of C is thrice as that of probability of A and if $P(A \cap B) = \frac{1}{6}$, $p(B \cap C) = \frac{1}{4}$,

$$P(A \cap C) = \frac{1}{8}$$
, $P(A \cup B \cup C) = \frac{9}{10}$, $P(A \cap B \cap C) = \frac{1}{15}$, then find $P(A)$, $P(B)$ and $P(C)$?
Answer:

$$P(B) = 2P(A), P(C) = 3P(A), P(A \cap B) = \frac{1}{6}, p(B \cap C) = \frac{1}{4}, P(A \cap C) = \frac{1}{8}, P(A \cup B \cup C) = \frac{9}{10}$$

$$P(A \cap B \cap C) = \frac{1}{15}$$

$$\Rightarrow P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(B \cap C) - P(A \cap C) + P(A \cap B \cap C)$$

$$\frac{9}{10} = P(A) + 2P(A) + 3P(A) - \frac{1}{6} - \frac{1}{4} - \frac{1}{8} + \frac{1}{15}$$

$$\frac{9}{10} = 6P(A) - \frac{1}{6} - \frac{1}{4} - \frac{1}{8} + \frac{1}{15} \Rightarrow \frac{9}{10} + \frac{1}{6} + \frac{1}{4} + \frac{1}{8} - \frac{1}{15} = 6P(A)$$

$$6P(A) = \frac{108 + 20 + 30 + 15 - 8}{120}$$

$$6P(A) = \frac{165}{120} \Rightarrow P(A) = \frac{165}{120} \times \frac{1}{6} \Rightarrow P(A) = \frac{165}{720} \Rightarrow P(A) = \frac{11}{48}$$

$$\Rightarrow P(A) = \frac{11}{48}$$

$$\Rightarrow P(B) = 2 \times \frac{11}{48} \qquad P(B) = \frac{11}{24}$$

10[™] MA THS

www.kalvikural.com

$$\Rightarrow P(C) = 3 \times \frac{11}{48}$$
 $P(C) = \frac{11}{16}$

44. In a class of 35, students are numbered from 1 to 35. The ratio of boys to girls is 4 : 3. The roll numbers of students begin with boys and end with girls. Find the probability that a student selected is either a boy with prime roll number or a girl with composite roll number or an even roll number.

~ 103 ~

Answer:

$$\begin{aligned} n(S) &= 35, \quad n(B) : n(G) = 4 : 3 \\ \Rightarrow n(B) &= 35 \times \frac{4}{7} \qquad \Rightarrow n(B) = 5 \times 4 \qquad \Rightarrow n(B) = 20 \\ \Rightarrow n(G) &= 35 \times \frac{3}{7} \qquad \Rightarrow n(G) = 5 \times 3 \qquad \Rightarrow n(G) = 15 \\ Boys &= \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20\} \\ Girls &= \{21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35\} \\ Let A be the event of getting boys with prime numbers. \\ A &= \{2, 3, 5, 7, 11, 13, 17, 19\} \qquad \Rightarrow n(A) = 8 \\ \Rightarrow P(A) = \frac{n(A)}{n(S)} &= \frac{8}{35} \\ Let B be the event of getting girls with composite numbers. \\ B &= \{21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35\} \qquad \Rightarrow n(B) = 12 \\ \Rightarrow P(B) = \frac{n(B)}{n(S)} &= \frac{12}{35} \\ Let C be the event of getting even roll numbers. \\ C &= \{2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34\} \qquad \Rightarrow n(C) = 17 \\ \Rightarrow P(C) = \frac{n(C)}{n(S)} &= \frac{17}{35} \\ (A \cap B) &= \{ \} \qquad \Rightarrow n(A \cap B) = 0 \\ P(A \cap B) &= \frac{n(A \cap B)}{n(S)} = \frac{0}{35} &= 0 \\ (B \cap C) &= \{22, 24, 26, 28, 30, 32, 34\} \qquad \Rightarrow n(B \cap C) = 7 \\ P(B \cap C) &= \frac{n(B \cap C)}{n(S)} &= \frac{7}{35} \\ (A \cap C) &= \{2\} \qquad \Rightarrow n(A \cap C) = 1 \\ P(A \cap C) &= \frac{n(A \cap C)}{n(S)} &= \frac{1}{35} \\ (A \cap B \cap C) &= \{ \} \qquad \Rightarrow n(A \cap B \cap C) = 0 \\ P(A \cap B \cap C) &= \frac{n(A \cap B)}{n(S)} &= \frac{0}{35} &= 0 \\ \Rightarrow P(A \cup B \cup C) &= P(A) + P(B) + P(C) - P(A \cap B) - P(B \cap C) - P(A \cap C) + P(A \cap B \cap C) \\ &= \frac{8}{35} + \frac{12}{35} + \frac{17}{35} - 0 - \frac{7}{35} - \frac{1}{35} + 0 \\ &= \frac{8 + 12 + 17 - 7 - 1}{35} \\ \Rightarrow P(A \cup B \cup C) &= \frac{2}{35} \end{aligned}$$
