MADRAS CHRISTIAN COLLEGE HR. SEC. SCHOOL,

 CHETPET, CHENNAI - 31
$10^{\text {TH }}$ STD
MATHEMATICS
MINIMUM LEVEL STUDY MATERIAL 2019-2020

GEOMETRY

1. Construct a $\triangle \mathrm{PQR}$ in which $\mathrm{PQ}=8 \mathrm{~cm}, \angle \mathrm{R}=60^{\circ}$ and the median $R G$ from R to $P Q$ is 5.8 cm . Find the length of the altitude from R to $P Q$.

Solution :

Construction

Step 1 : Draw a line segment $P Q=8 \mathrm{~cm}$.
Step 2 : At P, draw PE such that $\angle \mathrm{QPE}=60^{\circ}$.
Step 3 : At P, draw PF such that $\angle \mathrm{EPF}=90^{\circ}$.
Step 4 : Draw the perpendicular bisector to PQ , which intersects PF at O and PQ at G .
Step 5 : With O as centre and OP as radius draw a circle.
Step 6: From G mark arcs of radius 5.8 cm on the circle. Mark them as R and S .
Step 7 : Join $P R$ and $R Q$. Then $\triangle P Q R$ is the required triangle .
Step 8 : From R draw a line RN perpendicular to LQ. LQ meets RN at M
Step 9 : The length of the altitude is $\mathrm{RM}=3.5$ cm.
2. Construct a triangle $\triangle \mathrm{PQR}$ such that $\mathrm{QR}=5$ $\mathrm{cm}, \angle \mathrm{P}=30^{\circ}$ and the altitude from P to QR is of length 4.2 cm .

Solution :

Construction

Step 1: Draw a line segment $\mathrm{QR}=5 \mathrm{~cm}$.
Step 2 : At Q , draw QE such that $\angle \mathrm{RQE}=30^{\circ}$.
Step 3: At Q, draw QF such that $\angle \mathrm{EQF}=90^{\circ}$.
Step 4 : Draw the perpendicular bisector XY to QR , which intersects QF at O and QR at G .
Step 5 : With O as centre and $O Q$ as radius draw a circle.
Step 6 : From G mark an arc in the line XY at M, such that $\mathrm{GM}=4.2 \mathrm{~cm}$.
Step 7 : Draw AB through M which is parallel to QR .
Step $8: \mathrm{AB}$ meets the circle at P and S .
Step 9 : Join QP and RP. Then $\triangle \mathrm{PQR}$ is the required triangle.
3. Draw a triangle ABC of base $\mathrm{BC}=8 \mathrm{~cm}, \angle \mathrm{~A}=$ 60° and the bisector of $\angle \mathrm{A}$ meets BC at D such that $\mathrm{BD}=6 \mathrm{~cm}$.

Solution :

Rough diagram

Construction

Step 1: Draw a line segment $B C=8 \mathrm{~cm}$.
Step 2 : At B, draw BE such that $\angle \mathrm{CBE}=60^{\circ}$.
Step 3: At B, draw BF such that $\angle \mathrm{EBF}=90^{\circ}$.
Step 4 : Draw the perpendicular bisector to BC , which intersects BF at O and BC at G .
Step 5 : With O as centre and $O B$ as radius draw a circle.
Step 6 : From B mark an arcs of 6 cm on $B C$ at D.
Step 7 : The perpendicular bisector intersects the circle at I. Join ID.
Step 8 : ID produced meets the circle at A. Now join $A B$ and $A C$. Then $\triangle A B C$ is the required triangle.
4. Construct a $\triangle \mathrm{PQR}$ which the base $\mathrm{PQ}=$ $4.5 \mathrm{~cm}, \angle R=35^{\circ}$ and the median from R to $P Q$ is 6 cm .

Solution :

Construction

Step 1: Draw a line segment $\mathrm{PQ}=4.5 \mathrm{~cm}$.
Step 2: At P, draw PE such that $\angle \mathrm{QPE}=35^{\circ}$.
Step 3: At P, draw PF such that $\angle \mathrm{EPF}=90^{\circ}$.
Step 4 : Draw the perpendicular bisector to $P Q$, meets PF at O and PQ at G .

Step 5 : With O as centre and OP as radius draw a circle.

Step 6: From G mark arcs of 6 cm on the circle at RAS.

Step 7 : Join $P R$, RQ. Then $\triangle P Q R$ is the required Δ.

Step 8 : Join RG, which is the median.
5. Construct a $\triangle P Q R$ in which $P Q=5 \mathrm{~cm}$, $\angle \mathrm{P}=40^{\circ}$ and the median PG from P to $Q R$ is 4.4 cm . Find the length of the altitude from P to QR .
Solution :

Construction

Step 1: Draw a line segment $\mathrm{PQ}=5 \mathrm{~cm}$.
Step 2 : At P, draw PE such that $\angle \mathrm{QPE}=40^{\circ}$.
Step 3 : At P, draw PF such that $\angle \mathrm{EPF}=90^{\circ}$.
Step 4 : Draw the perpendicular bisector to PQ , meets PF at O and PQ at G .

Step 5 : With O as centre and OP as radius draw a circle.

Step 6 : From G mark arcs of 4.4 cm on the circle radius 4.4 m .

Step 7 : Join PR, RQ. Then $\triangle P Q R$ is the required Δ.

Step 8 : Length of altitude is $\mathrm{RM}=3 \mathrm{~cm}$
6. Construct a $\triangle \mathrm{PQR}$ such that $\mathrm{QR}=6.5$ $\mathrm{cm}, \angle \mathrm{P}=60^{\circ}$ and the altitude from P to QR is of length 4.5 cm .

Construction

Step 1: Draw a line segment $\mathrm{QR}=6.5 \mathrm{~cm}$.
Step 2 : At Q , draw QE such that $\angle \mathrm{RQE}=60^{\circ}$.
Step 3: At Q, draw QF such that $\angle \mathrm{EQF}=90^{\circ}$.
Step 4 : Draw the perpendicular bisector XY to QR intersects QF at $\mathrm{O} \& \mathrm{QR}$ at G .

Step 5 : With O as centre and $O Q$ as radius draw a circle.

Step 6 : XY intersects QR at G . On XY, from G, mark arc M such that $\mathrm{GM}=4.5 \mathrm{~cm}$.

Step 7 : Draw AB, through M which is parallel to QR .

Step 8 : AB meets the circle at P and S .
Step 9 : Join QP, RP. Then $\triangle \mathrm{PQR}$ is the required Δ.
7. Construct a $\triangle \mathrm{ABC}$ such that $\mathrm{AB}=5.5$ $\mathrm{cm}, \angle \mathrm{C}=25^{\circ}$ and the altitude from C to $A B$ is 4 cm .

Construction

Step 1: Draw a line segment $\mathrm{AB}=5.5 \mathrm{~cm}$.
Step 2: At A, draw AE such that $\angle \mathrm{BAE}=25^{\circ}$.
Step 3: At A, draw AF such that $\angle \mathrm{EAF}=90^{\circ}$.
Step 4 : Draw the perpendicular bisector XY to $A B$ intersects $A F$ at $O \& A B$ at G.
Step 5 : With O as centre and OA as radius draw a circle.
Step 6 : XY intersects $A B$ at G . On XY, from G , mark arc M such that $\mathrm{GM}=4 \mathrm{~cm}$.
Step 7 : Draw PQ, through M parallel to $A B$ meets the circle at C and D .
Step 8 : Join $A C, B C$. Then $\triangle A B C$ is the required Δ.
8. Draw a triangle ABC of base $\mathrm{BC}=5.6$ $\mathrm{cm}, \angle A=40^{\circ}$ and the bisector of $\angle A$ meets $B C$ at D such that $C D=4 \mathrm{~cm}$.

Construction

Step 1 : Draw a line segment $\mathrm{BC}=5.6 \mathrm{~cm}$.
Step 2 : At B, draw BE such that $\angle \mathrm{CBE}=40^{\circ}$.
Step 3: At B, draw BF such that $\angle \mathrm{CBF}=90^{\circ}$.
Step 4 : Draw the perpendicular bisector to BC meets BF at $\mathrm{O} \& \mathrm{BC}$ at G .
Step 5 : With O as centre and $O B$ as radius draw a circle.
Step 6: From B, mark an arc of 4 cm on BC at D.
Step 7 : The \perp r bisector meets the circle at I \& Join ID.
Step 8 : ID produced meets the circle at A. Join $A B \& A C$.
Step 9 : Then $\triangle \mathrm{ABC}$ is the required triangle.
9. Draw $\triangle \mathrm{PQR}$ such that $\mathrm{PQ}=6.8 \mathrm{~cm}$, vertical angle is 50° and the bisector of the vertical angle meets the base at D where $\mathrm{PD}=5.2 \mathrm{~cm}$.

Construction

Step 1: Draw a line segment $\mathrm{PQ}=6.8 \mathrm{~cm}$.
Step 2 : At P , draw PE such that $\angle \mathrm{QPE}=50^{\circ}$.
Step 3: At P , draw PF such that $\angle \mathrm{QPF}=90^{\circ}$.
Step 4 : Draw the perpendicular bisector to PQ meets PF at O and PQ at G .

Step 5 : With O as centre and OP as radius draw a circle.

Step 6: From P mark an arc of 5.2 cm on PQ at D.

Step 7 : The perpendicular bisector meets the circle at R. Join PR and QR.
Step 8: Then $\triangle P Q R$ is the required triangle.
10. Draw a circle of radius 3 cm . Take a point P on this circle and draw a tangent at P.

Solution :

Given, radius $\mathrm{r}=3 \mathrm{~cm}$

Construction

Step 1: Draw a circle with centre at O of radius 3 cm .
Step 2 : Take a point P on the circle. Join OP.
Step 3 : Draw perpendicular line TT^{\prime} to OP which passes through P.
Step 4 : TT' is the required tangent.
11. Draw a tangent at any point R on the circle of radius 3.4 cm and centre at P ?

Construction

Step 1: With O as the centre, draw a circle of radius 4 cm .

Step 2 : Take a point L on the circle. Through L draw any chord LM.

Step 3 : Take a point M distinct from L and N on the circle, so that L, M and N are in anticlockwise direction. Join LN and NM.

Step 4 : Through L draw a tangent TT' such that $\angle \mathrm{TLM}=\angle \mathrm{MNL}$.

Step $5: \mathrm{TT}^{\prime}$ is the required tangent.
13. Draw a circle of radius 4.5 cm . Take a point on the circle. Draw the tangent at that point using the alternate segment theorem.

Construction

Step 1: With O as the centre, draw a circle of radius 4 cm .

Step 2 : Take a point L on the circle. Through L draw any chord LM.

Step 3 : Take a point M distinct from L and N on the circle, so that L, M and N are in anticlockwise direction. Join LN and NM.

Step 4 : Through L draw a tangent TT^{\prime} such that $\angle \mathrm{TLM}=\angle \mathrm{MNL}$.

Step $5: \mathrm{TT}^{\prime}$ is the required tangent.
14. Draw a circle of diameter 6 cm from a point P, which is 8 cm away from its centre. Draw the two tangents PA and PB to the circle and measure their lengths.

Solution :

Given, diameter $(\mathrm{d})=6 \mathrm{~cm}$, we find radius $(\mathrm{r})=\frac{6}{2}=3 \mathrm{~cm}$.

Step 1 : With centre at O, draw a circle of radius 3 cm .

Step 2 : Draw a line OP of length 8 cm .
Step 3: Draw a perpendicular bisector of OP, which cuts OP at M.

Step 4 : With M as centre and MO as radius, draw a circle which cuts previous circle at A and B .

Step5: Join AP and BP. AP and BP are the required tangents. Thus length of the tangents are $\mathrm{PA}=\mathrm{PB}=7.4 \mathrm{~cm}$.
15. Draw the two tangents from a point which is 10 cm away from the centre of a circle of radius 5 cm . Also, measure the lengths of the tangents.

Solution:

Construction

Step 1: With centre at O, draw a circle of radius 5 cm .
Step 2 : Draw a line $\mathrm{OP}=10 \mathrm{~cm}$.
Step 3 : Draw a perpendicular bisector of OP, which cuts OP at M.
Step 4 : With M as centre and MO as radius, draw a circle which cuts previous circle at A and B .
Step5: Join AP and BP. AP and BP are the required tangents. Thus length of the tangents are $\mathrm{PA}=\mathrm{PB}=8.7 \mathrm{~cm}$.
16. Take a point which is 11 cm away from the centre of a circle of radius 4 cm and draw the two tangents to the circle from that point.

Solution:

Construction

Step 1 : With centre at O, draw a circle of radius 4 cm .

Step 2 : Draw a line $O P=11 \mathrm{~cm}$.
Step 3 : Draw a perpendicular bisector of OP, which cuts OP at M.

Step 4 : With M as centre and MO as radius, draw a circle which cuts previous circle at A and B.

Step5 : Join AP and BP. They are the required tangents $\mathrm{AP}=\mathrm{BP}=10.3 \mathrm{~cm}$.

Verification : In the right angle triangle $\triangle \mathrm{OAP}$,
$\mathrm{AP}=\sqrt{\mathrm{OP}^{2}-\mathrm{OA}^{2}}$
$=\sqrt{121-16}=\sqrt{105}=10.3 \mathrm{~cm}$
17. Draw the two tangents from a point which is 5 cm away from the centre of a circle of diameter $6 \mathbf{c m}$. Also, measure the lengths of the tangents.

Solution:

Construction

Step 1 : With centre at O, draw a circle of radius 3 cm . with centre at O.
Step 2 : Draw a line $O P=5 \mathrm{~cm}$.
Step 3 : Draw a perpendicular bisector of OP, which cuts OP at M.
Step 4 : With M as centre and OM as radius, draw a circle which cuts previous circle at A and B.
Step 5 : Join AP and BP. They are the required tangents $\mathrm{AP}=\mathrm{BP}=4 \mathrm{~cm}$.

Verification :

$$
\begin{aligned}
A P & =\sqrt{\mathrm{OP}^{2}-\mathrm{OA}^{2}} \\
& =\sqrt{5^{2}-3^{2}} \\
& =\sqrt{25-9} \\
& =\sqrt{16}=4 \mathrm{~cm}
\end{aligned}
$$

18. Draw a tangent to the circle from the point P having radius 3.6 cm , and centre at O. Point P is at a distance 7.2 cm from the centre.

Construction

Step 1 : Draw a circle of radius 3.6 cm . with centre at O.

Step 2 : Draw a line $\mathrm{OP}=7.2 \mathrm{~cm}$.
Step 3 : Draw a perpendicular bisector of OP, which cuts it M.

Step 4 : With M as centre and OM as radius, draw a circle which cuts previous circle at A and B.

Step5: Join AP and BP. They are the required tangents $\mathrm{AP}=\mathrm{BP}=0.3 \mathrm{~cm}$.

Verification :

$$
\begin{aligned}
A P & =\sqrt{\mathrm{OP}^{2}-\mathrm{OA}^{2}} \\
& =\sqrt{(7.2)^{2}-(3.6)^{2}} \\
& =\sqrt{51.84-12.96} \\
& =\sqrt{38.88}=6.3 \text { (approx) }
\end{aligned}
$$

Construction of similar triangles

Example 4.10
Construct a triangle similar to a given triangle PQR with its sides equal to $\frac{3}{5}$ of the corresponding sides of the triangle PQR (scale factor $\frac{3}{5}<1$)

Solution :

Given a triangle PQR we are required to construct another triangle whose sides are $\frac{3}{5}$ of the corresponding sides of the triangle PQR .

Steps of construction

1. Construct a $\triangle \mathrm{PQR}$ with any measurement.

2. Draw a ray QX making an acute angle with QR on the side opposite to vertex P .
3. Locate 5 (the greater of 3 and 5 in $\frac{3}{5}$) points.
$\mathrm{Q}_{1}, \mathrm{Q}_{2}, \mathrm{Q}_{3}, \mathrm{Q}_{4}$, and Q_{5} on QX so that $\mathrm{QQ}_{1}=$ $\mathrm{Q}_{1} \mathrm{Q}_{2}=\mathrm{Q}_{2} \mathrm{Q}_{3}=\mathrm{Q}_{3} \mathrm{Q}_{4}=\mathrm{Q}_{4} \mathrm{Q}_{5}$
4. Join $Q_{5} R$ and draw a line through Q_{3} (the third point, 3 being smaller of 3 and 5 in $\frac{3}{5}$) parallel to $\mathrm{Q}_{5} \mathrm{R}$ to intersect QR at R^{\prime}.
5. Draw line through R^{\prime} parallel to the line RP to intersect QP at P^{\prime}. Then, $\Delta \mathrm{P}^{\prime} \mathrm{QR}^{\prime}$ is the required triangle each of whose sides is three-fifths of the corresponding sides of $\triangle \mathrm{PQR}$.
6. Construct a triangle similar to a given triangle PQR with its sides equal to $\frac{7}{4}$ of the corresponding sides of the triangle PQR (scale factor $\frac{7}{4}>1$)

Solution :

Given a triangle $P Q R$, we are required to construct another triangle whose sides are $\frac{7}{4}$ of the corresponding sides of the triangle PQR .

Steps of construction

1. Construct a $\triangle P Q R$ with any measurement.
2. Draw a ray QX making an acute angle with QR on the side opposite to vertex P .
3. Locate 7 (the greater of 4 and $7 \mathrm{in} \frac{7}{4}$) points. $\mathrm{Q}_{1}, \mathrm{Q}_{2}, \mathrm{Q}_{3}, \mathrm{Q}_{4}, \mathrm{Q}_{5}, \mathrm{Q}_{6}$ and Q_{7} on QX so that $\mathrm{QQ}_{1}=\mathrm{Q}_{1} \mathrm{Q}_{2}=\mathrm{Q}_{2} \mathrm{Q}_{3}=\mathrm{Q}_{3} \mathrm{Q}_{4}=\mathrm{Q}_{4} \mathrm{Q}_{5}=\mathrm{Q}_{5} \mathrm{Q}_{6}=$
4. Join Q_{4} (the 4 th point, 4 being smaller of 4 and 7 in $\frac{7}{4}$) to R and draw a line through Q_{7} parallel to $Q_{4} R$, intersecting the extended line segment $Q R$ at R^{\prime}.
5. Draw a line through R^{\prime} parallel to $R P$ intersecting the extended line segment QP at P^{\prime} Then $\triangle \mathrm{P}^{\prime} \mathrm{QR}^{\prime}$ is the required triangle each of whose sides is seven-fourths of the corresponding sides of $\triangle \mathrm{PQR}$.
6. Construct a triangle similar to a given triangle $P Q R$ with its sides equal to $\frac{2}{3}$ of the corresponding sides of the triangle PQR (scale factor $\frac{2}{9}$).

Steps of construction

1. Construct a $\triangle \mathrm{PQR}$ with any measurement.
2. Draw a ray QX making an acute angle with QR on the side opposite to vertex P .
3. Locate 3 points (greater of 2 and 3 in $\frac{2}{3}$) points.
Q_{1}, Q_{2}, Q_{3} on $Q X$ so that
$\mathrm{QQ}_{1}=\mathrm{Q}_{1} \mathrm{Q}_{2}=\mathrm{Q}_{2} \mathrm{Q}_{3}$
4. Join $Q_{3} R$ and draw a line through Q_{2} (3 being smaller of 2 and 3 in $\frac{2}{3}$) parallel
to $Q_{3} R$ to intersect $Q R$ at R^{\prime}. to $\mathrm{Q}_{3} \mathrm{R}$ to intersect QR at R^{\prime}.
5. Draw line through R' parallel to the line RP intersecting the QP at P^{\prime}. Then, $\Delta \mathrm{P}^{\prime} \mathrm{QR}^{\prime}$ is the required Δ.

22. Construct a triangle similar to a given

 triangle LMN with its sides equal to $\frac{4}{5}$ Solution :

1. Construct a $\Delta \mathrm{LMN}$ with any measurement.
2. Draw a ray MX making an acute angle with MN on the side opposite to vertex L .
3. Locate 5 points (greater of 4 and 5 in $\frac{4}{5}$) points.
$\mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{M}_{3}, \mathrm{M}_{4} \& \mathrm{M}_{5}$ so that $\mathrm{MM}_{1}=\mathrm{M}_{1} \mathrm{M}_{2}=$ $\mathrm{M}_{2} \mathrm{M}_{3}=\mathrm{M}_{3} \mathrm{M}_{4}=\mathrm{M}_{4} \mathrm{M}_{5}$,
4. Join M_{5} to N and draw a line through M_{4} (4 being smaller of 4 and 5 in $\frac{4}{5}$) parallel to $\mathrm{M}_{5} \mathrm{~N}$ to intersect MN at N^{\prime}.
5. Draw line through N^{\prime} parallel to the line LN intersecting line segment ML to L^{\prime}.

Then, L'M'N' is the required Δ.
23. Construct a triangle similar to a given triangle ABC with its sides equal to $\frac{6}{5}$ of the corresponding sides of the triangle ABC (scale factor $\frac{6}{5}$).

Solution :

Steps of construction

1. Construct a $\triangle \mathrm{ABC}$ with any measurement.
2. Draw a ray BX making an acute angle with BC on the side opposite to vertex A .
3. Locate 6 points (greater of 6 and 5 in $\frac{6}{5}$) points.
$\mathrm{B}_{1}, \mathrm{~B}_{2}, \ldots \ldots \ldots . . . \mathrm{B}_{6}$ on BX so that $\mathrm{BB}_{1}=\mathrm{B}_{1} \mathrm{~B}_{2}$
$=\mathrm{B}_{2} \mathrm{~B}_{3}=\mathrm{B}_{3} \mathrm{~B}_{4}=\mathrm{B}_{3} \mathrm{~B}_{4}=\mathrm{B}_{4} \mathrm{~B}_{5}=\mathrm{B}_{5} \mathrm{~B}_{6}$,
4. Join B_{4} (4 being smaller of 4 and 6 in $\frac{6}{4}$) to C and draw a line through B_{6} parallel to $\mathrm{B}_{4} \mathrm{C}$ to intersecting the extended line segment BC at C^{\prime}.
5. Draw line through C^{\prime} parallel to CA intersect the extended line segment BA to A^{\prime}.

Then, $\Delta A^{\prime} B^{\prime} C^{\prime}$ is the required Δ.
24. Construct a triangle similar to a given triangle PQR with its sides equal to $\frac{7}{3}$ of the corresponding sides of the triangle PQR (scale factor $\frac{7}{3}$).

Solution :

Steps of construction

1. Construct a $\triangle \mathrm{PQR}$ with any measurement.
2. Draw a ray PX making an acute angle with $P R$ on the side opposite to vertex Q.
3. Locate 7 points (greater of 3 and 7 in $\frac{7}{3}$) points.
$\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots \ldots \ldots . . \mathrm{P}_{7}$ on PX so that $\mathrm{PP}_{1}=\mathrm{P}_{1} \mathrm{P}_{2}=$ $\mathrm{P}_{2} \mathrm{P}_{3}$ $=\mathrm{P}_{6} \mathrm{P}_{7}$,
4. Join $P_{3} R$ (3 being smaller of 3 and 7 in $\frac{7}{3}$) and draw a line through P_{7} parallel to $P_{3} R$ to intersecting the extended line segment PR at R'.
5. Draw line through R^{\prime} parallel to $Q R$ intersect the extended line segment PQ to Q'.

Then, $\Delta \mathrm{P}^{\prime} \mathrm{Q}^{\prime} \mathrm{R}^{\prime}$ is the required Δ.

GRAPH

1. Discuss the nature of solution of the following quadratic equation $X^{2}+X-12=0$

X	-5	-4	-3	-2	-1	0	1	2	3	4	5
X^{2}	25	16	9	4	1	0	1	4	9	16	25
X	-5	-4	-3	-2	-1	0	1	2	3	4	5
-12	-12	-12	-12	-12	-12	-12	-12	-12	-12	-12	-12
+	25	26	9	4							
-	-17	-26	-15	-16	-13	-12	-12	-12	-12	-12	-12
Y	8	0	-6	-10	-12	-12	-10	-6	0	8	18

Solution set $=\{-4,3\}$
 Therefore the roots are real and unequal.

2. Discuss the nature of solution of the following quadratic equation $X^{2}-8 X+16=0$

X	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
X^{2}	25	16	9	4	1	0	1	4	9	16	25	36	49
-8X	40	32	24	16	8	0	-8	-16	-24	-32	-40	-48	-56
16	16	16	16	16	16	16	16	16	16	16	16	16	16
+	81	64	49	36	25	16	17	20	26	32	41	52	65
-	0	0	0	0	0	0	-8	-16	-24	-32	-40	-48	-56
Y	81	64	49	36	25	16	9	4	1	0	1	4	9

Solution set $=\{4,4\}$
Therefore the roots are real and equal.
3. Discuss the nature of solution of the following quadratic equation $X^{2}+2 X+5=0$

X	-5	-4	-3	-2	-1	0	1	2	3	4	5
X^{2}	25	16	9	4	1	0	1	4	9	16	25
$2 X$	-10	-8	-6	-4	-2	0	2	4	6	8	10
5	5	5	5	5	5	5	5	5	5	5	5
+	30	21	15	9	6	5	8	13	20	29	40
-	-10	-8	-6	-4	-2	0	0	0	0	0	0
Y	20	13	8	5	4	5	8	13	20	29	40

No solution
Therefore the roots are unreal.
4. Discuss the nature of solution of the following quadratic equation $X^{2}-9 X+20=0$

X	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
X^{2}	25	16	9	4	1	0	1	4	9	16	25	36	49
$-9 X$	45	36	27	18	9	0	-9	-18	-27	-36	-45	-54	-63
20	20	20	20	20	20	20	20	20	20	20	20	20	20
+	90	72	56	42	30	20	21	24	29	36	45	56	69
-	0	0	0	0	0	-9	-18	-27	-36	-45	-54	-63	
Y	90	72	56	42	30	20	12	6	2	0	0	2	6

Solution : $\{4,5\}$

Therefore the roots are real and unequal.
5. Discuss the nature of solution of the following quadratic equation $X^{2}-4 X+4=0$

X	-5	-4	-3	-2	-1	0	1	2	3	4	5
X^{2}	25	16	9	4	1	0	1	4	9	16	25
$-4 X$	20	16	12	8	4	0	-4	-8	-12	-16	-20
4	4	4	4	4	4	4	4	4	4	4	4
+	49	36	25	16	9	4	5	8	13	20	29
-	0	0	0	0	0	0	-1	-8	-12	-16	-25
Y	49	36	25	16	9	4	1	0	1	4	9

Solution : \{2,2\}
Therefore the roots are real and equal
6. Discuss the nature of solution of the following quadratic equation $X^{2}+X+7=0$

X	-5	-4	-3	-2	-1	0	1	2	3	4	5
X^{2}	25	16	9	4	1	0	1	4	9	16	25
X	-5	-4	-3	-2	-1	0	1	2	3	4	5
7	7	7	7	7	7	7	7	7	7	7	7
+	32	23	16	11	8	7	9	13	19	27	37
-	-5	-4	-3	-2	-1	0	0	0	0	0	0
Y	27	19	13	9	7	7	9	13	19	27	37

No Solution
Therefore the roots are unreal.
7. Discuss the nature of solution of the following quadratic equation $X^{2}-9=0$

X	-5	-4	-3	-2	-1	0	1	2	3	4	5
X^{2}	25	16	9	4	1	0	1	4	9	16	25
-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9	-9
Y	16	7	0	-5	-8	-9	-8	-5	0	7	16

Solution : $\{-3,3\}$
Therefore the roots are real and unequal.
8. Discuss the nature of solution of the following quadratic equation ($2 x-3)(x+2)=0$ $(2 x-3)(x+2)=0 \quad \Rightarrow 2 x^{2}+x-6=0$

X	-5	-4	-3	-2	-1	0	1	2	3	4	5
X^{2}	25	16	9	4	1	0	1	4	9	16	25
$2 X^{2}$	50	32	18	8	2	0	2	8	18	32	50
X	-5	-4	-3	-2	-1	0	1	2	3	4	5
-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6
+	50	32	18	8	2	0	3	10	21	36	
-	-11	-10	-9	-8	-7	-6	-6	-6	-6	-6	
Y	39	22	9	0	-5	-6	-3	4	15	30	49

Solution : $\{-2,1.5\}$
Therefore the roots are real and unequal.
9. Draw the graph of $Y=X^{2}-4$ and hence solve $X^{2}-X-12=0$

X	-5	-4	-3	-2	-1	0	1	2	3	4	5
X^{2}	25	16	9	4	1	0	1	4	9	16	25
-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4
Y	21	12	5	0	-3	-4	-3	0	5	10	21

To solve $x^{2}-x-12=0$, subtract $x^{2}-x-12=0$ from $\mathrm{y}=x^{2}-4$.

$$
\text { from } \quad \begin{aligned}
& \mathrm{y}=x^{2}-4 \\
& \mathrm{y}=x^{2}+0 x-4 \\
& 0=x^{2}-x-12 \\
& \hline \mathrm{y}=x+8 \\
& \hline
\end{aligned}
$$

x	-4	-3	-2	-1	0	1	2	3	4
y	4	5	6	7	8	9	10	11	12

Solution : $\{-3,4\}$
10. Draw the graph of $Y=X^{2}+X$ and hence solve $X^{2}+1=0$

X	-5	-4	-3	-2	-1	0	1	2	3	4	5
X^{2}	25	16	9	4	1	0	1	4	9	16	25
X	-5	-4	-3	-2	-1	0	1	2	3	4	5
Y	20	12	6	2	0	0	2	6	12	20	30

To solve $x^{2}+1=0$, subtract $x^{2}+1=0$ from $\mathrm{y}=x^{2}+x$.

$\mathrm{y}=x^{2}+x$
$0=x^{2}-0 x+1$
$\mathrm{y}=\quad x-1$

x	-4	-3	-2	-1	0	1	2	3	4	5
y	-5	-4	-3	-2	-1	0	1	2	3	4

11. Draw the graph of $Y=X^{2}+3 x+2$ and use it to solve $X^{2}+2 x+1=0$

X	-5	-4	-3	-2	-1	0	1	2	3	4	5
X^{2}	25	16	9	4	1	0	1	4	9	16	25
$3 X$	-15	-12	-9	-6	-3	0	3	6	9	12	15
2	2	2	2	2	2	2	2	2	2	2	2
+	27	18	11	6	3	2	6	12	20	30	42
-	-15	-12	-9	-6	-3	0	0	0	0	0	0
Y	12	6	2	0	0	2	6	12	20	30	42

To solve $x^{2}+2 x+1=0$, subtract $x^{2}+2 x+1=0$ from $\mathrm{y}=x^{2}+3 x+2$.

$$
\begin{aligned}
& \mathrm{y}=x^{2}+3 x+2 \\
& 0=x^{2}+2 x+1 \\
& \hline \mathrm{y}=\quad x+1
\end{aligned}
$$

x	-4	-3	-2	-1	0	1	2	3	4
y	-3	-2	-1	0	1	2	3	4	5

Solution $: \quad\{-1,-1\}$
12. Draw the graph of $Y=X^{2}+3 x-4$ and hence use it to solve $x^{2}+3 x-4-0$

X	-5	-4	-3	-2	-1	0	1	2	3	4	5
X^{2}	25	16	9	4	1	0	1	4	9	16	25
$3 X$	-15	-12	-9	-6	-3	0	3	6	9	12	15
-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4
+	25	16	9	4	1	0	4	10	18	28	30
-	-19	-16	-13	-10	-7	-4	-4	-4	-4	-4	-4
Y	6	0	-4	-6	-6	-4	0	6	14	24	26

To solve $x^{2}+3 x-4=0$, subtract $x^{2}+3 x-4=0$ from $\mathrm{y}=x^{2}+3 x-4$.

$\mathrm{y}=x^{2}+3 x-4$
$0=x^{2}+3 x-4$
$\mathrm{y}=0$

13. Draw the graph of $Y=X^{2}-5 X-6$ and hence solve $X^{2}-5 X-14=0$

x	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
x^{2}	25	16	9	4	1	0	1	4	9	16	25	36	49
$-5 X$	25	20	15	10	5	0	-5	-10	-15	-20	-25	-30	-35
-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6	-6
+	50	36	24	14	6	0	1	4	9	16	25	36	49
-	-6	-6	-6	-6	-6	-6	-11	-16	-21	-26	-31	-36	-41
Y	44	30	18	8	0	-6	-10	-12	-12	-10	-6	0	8

To solve $x^{2}-5 x-14=0$, subtract $x^{2}-5 x-14=0$ from $y=x^{2}-5 x-6$.

$\mathrm{y}=x^{2}-5 x-6$
$0=x^{2}-5 x-14$
$\mathrm{y}=8$

14. Draw the graph of $Y=2 x^{2}-3 x-5$ and hence solve $2 x^{2}-4 x-6=0$

X	-5	-4	-3	-2	-1	0	1	2	3	4	5
X^{2}	25	16	9	4	1	0	1	4	9	16	25
$2 X^{2}$	50	32	18	8	2	0	2	8	18	32	50
$-3 x$	15	12	9	6	3	0	-3	-6	-9	-12	-15
-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
+	65	44	27	14	5	0	2	8	18	32	50
-	-5	-5	-5	-5	-5	-5	-8	-11	-14	-17	-20
Y	60	39	22	9	0	-5	-6	-3	4	15	30

To solve $2 x^{2}-4 x-6=0$, subtract it from $y=2 x^{2}-3 x-5$.

$\mathrm{y}=2 x^{2}-3 x-5$
$0=2 x^{2}-4 x-6$
$\mathrm{y}=r$

x	0	1	2	-1
y	1	2	3	0

Solution : $\{-1,3\}$
15. Draw the graph of $Y=(X-1)(X+3)$ and hence solve $X^{2}-X-6=0$ $Y=x^{2}+2 x-3$

x	-5	-4	-3	-2	-1	0	1	2	3	4	5
x^{2}	25	16	9	4	1	0	1	4	9	16	25
$2 x$	-10	-8	-6	-4	-2	0	2	4	6	8	10
-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3
+	25	16	9	4	1	0	3	8	15	24	35
-	-13	-11	-9	-7	-5	-3	-3	-3	-3	-3	-3
y	12	5	0	-3	-4	-3	0	5	12	21	32

To solve $x^{2}-x-6=0$, subtract it from $\mathrm{y}=x^{2}+2 x-3$.

$$
\mathrm{y}=x^{2}+2 x-3
$$

Solution : $\{-2,3\}$

CHAPTER - 1

1. If $n(A \times B)=6$ and $A=(1,3\}$ then $n(B)$ is
c) 3
d) 6
2. $A=\{a, b, p\}, B\{2,3\}$ and $C=\{p, q, r, s\}$ then $n[(A \cup C) \times B]$ is \qquad
a) 8
b) 20
c) 12
d) 16
3. If $A=\{1,2\}, B\{1,2,3,4\}, C=\{5,6\}$ and $D=\{5,6,7,8\}$ then state which of the following statement is true.
a) $(A \times C) \subset(B \times D)$
b) $(B \times D) \subset(A \times C)$
c) $(A \times B) \subset(A \times D)$
d) $(D \times A) \subset(B \times A)$
4. If there are 1024 relations from a set $A=(1,2,3,4,5)$ to a set B, then the number of elements in B is
a) 3
b) 2
c) 4
d) 8
5. The range of the relation $R=\left\{\left(x, x^{2}\right) \mid x\right.$ is a prime number lessthan 13$\}$ is
a) $\{2,3,5,7\}$
b) $\{2,3,5,7,11\}$
c) $\{4,9,25,49,121\}$
d) $\{1,4,9,25,49,121\}$
6. If the ordered pairs $(a+2,4)$ and $(5,2 a+b)$ are equal then (a, b) is
a) ($2,-2$)
b) $(5,1)$
c) $(2,3)$
d) ($3,-2$)
7. Let $n(A)=m$ and $n(B)=n$ then the total number of non - empty relations that can be defined from A to B is
a) m^{n}
b) n^{m},
c) $2^{m n}-1$
d) $2^{m n}$
8. If $\{(a, 8),(6, b)\}$ represents an identity function, then the value of a and b are respectively
a) $(8,6)$
b) $(8,8)$
c) $(6,8)$
d) $(6,6)$
9. Let $A=\{1,2,3,4\}$ and $B\{4,8,9,10\}$. A function $f: A \rightarrow B$ given by $f=\{(1,4),(2,8),(3,9),(4,10)\}$ is a
a) Many - one function
b) Identity function
c) One - to - one function
d) Into function
10. If $f(x)=2 x^{2}$ and $g(x)=\frac{1}{3 x}$ then $(f \circ g)$ is
a) $\frac{3}{2 x^{2}}$
b) $\frac{2}{3 x^{2}}$
C) $\frac{2}{9 x^{2}}$
d) $\frac{1}{6 x^{2}}$
11. If $: A \rightarrow B$ is a bijective function and if $n(B)=7$, then $n(A)$ is equal to
a) 7
b) 49
c) 1
d) 14
12. Let f and g be two functions given by $f\{(0,1),(2,0),(3,-4),(4,2),(5,7)\}$
$G=\{(0,2),(1,0),(2,4),(-4,2),(7,0)\}$ then the range of $(f \circ g)$ is
'a) $\{0,2,3,4,5\}$
b) $\{-4,1,0,2,7\}$
c) $\{1,2,3,4,5\}$
d) $\{0,1,2\}$
13. Let $f(x)=\sqrt{1+x^{2}}$ then
a) $f(x y)=f(x) \cdot f(y)$
b) $f(x y) \geq f(x) . f(y)$
c) $f(x y) \leq f(x) . f(y)$
d) None of these
14. If $g\{(1,1),(2,3),(3,5),(4,7)\}$ is a function given by $g(x)=\alpha(x)+\beta$ then the values of α and β are
a) ($-1,2$)
b) $(2,-1)$
c) ($-1,-2$)
d) (1, 2)
15. $f(x)=(x+1)^{3}-(x-1)^{3}$ represents a function which is
a) linear
b) cubic
c) reciprocal
d) quadratic

CHAPTER - 2

1. Euclid's division lemma states that for positive integers a and b, there exist unique integers q and r such that $a=b q+r$, where r must satisfy
a) $1<r<b$
b) $0<r<b$
c) $0 \leq r<b$
d) $0<r \leq b$
2. Using Euclid's division lemma, if the cube of any positive integer is divided by 9 then the remainders are
a) 0, 1, 8
b) 1, 4, 8
c) $0,1,3$
d) 1, 3, 5
3. If the HCF of 65 and 117 is expressible in the form of $65 m-117$, then the value of m is
a) 4
b) 2
c) 1
d) 3
4. The sum of the exponents of the prime factors in the prime factorization of 1729 is
a) 1
b) 2
c) 3
d) 4
5. The least number that is divisible by all the numbers from 1 to 10 (both inclusive) is
a) 2025
b) 5220
c) 5025
d) 2520
6. $7^{4 k}=$ \qquad $(\bmod 100)$
a) 1
b) 2
c) 3
d) 4
7. Given $F_{1}=1, F_{2}=3$ and $F_{n}=F_{n-1}+F_{n-2}$ then F_{5} is
a) 3
b) 5
c) 8
d) 11
8. The first of an arithmetic progoresosion is unity and the common difference is 4. Which of the following will be a term of this A. P.
a) 4551
b) 10091
c) 7881
d) 13531
9. If 6 items of $6^{\text {th }}$ term of an A. P. is equal to 7 times the $7^{\text {th }}$ term, then the $13^{\text {th }}$ term of the A. P. is
a) 0
b) 6
c) 7
d) 13
10. An A. P. consists of 31 terms. If its $16^{\text {th }}$ term is ' m ', then the sum of all the terms of this A. P. is
a) 16 m
b) $62 m$
c) 31 m
d) $\frac{31}{2} m$
11. In an A. P., the first term is 1 and the common difference is 4. How many terms of the A.P. must be taken for their sum to be equal to 120?
a) 6
b) 7
c) 8
d) 9
12. If $A=2^{65}$ and $B=2^{64}+2^{63}+2^{62}+\ldots \ldots+2^{0}$ which of the following is true?
a) B is 2^{64} more than A
b) A and B are equal
c) B is larger than A by 1
d) A is larger than B by 1
13. The next term of the sequence $\frac{3}{16}, \frac{1}{8}, \frac{1}{12}, \frac{1}{18}, \ldots$. is
a) $\frac{1}{24}$
b) $\frac{1}{27}$
c) $\frac{2}{3}$
d) $\frac{1}{81}$
14. If the sequence $t_{1}, t_{2}, t_{3}, \ldots$. are in A.P then the sequence t_{6}, t_{12}, t_{18}, \qquad is
a) a Geometric Progression
b) an Arithmetic Progression
c) neither an Arithmetic Progression nor a Geometric Progression
d) a constant sequence
15. The value of $\left(1^{3}+2^{3}+3^{3}+\right.$ \qquad 153) $-(1+2+3+$ \qquad +15) is
a) 14400
b) 14200
c) 14280
d) 14520

CHAPTER - 3

1. A system of three linear equations in three variables is inconsistent if their planes
a) intersect only at a point
b) intersect in a line
a) coincides with each other
d) do not intersect
2. The solution of the system $x+y-3 z=-6,-7 y+7 z=7,3 z=9$ is
a) $x=1, y=2, z=3$
b) $x=-1, y=2, z=3$
c) $x=-1, y=-2, z=3$
d) $x=1, y=2, z=3$
3. If $(x-6)$ is the H.C. F of $x^{2}-2 x-24$ and $x^{2}-k x-6$ then the value of k is
a) 3
b) 5
c) 6
d) 8
4. $\frac{3 y-3}{y} \div \frac{7 y-7}{3 y^{2}}$
a) $\frac{9 y}{7}$
b) $\frac{9 y^{2}}{(21 y-21)}$
c) $\frac{21 y^{2}-42 y+21}{3 y^{2}}$
d) $\frac{7\left(y^{2}-2 y+1\right)}{y^{2}}$
5. $y^{2}+\frac{1}{y^{2}}$ is not equal to
a) $\frac{y^{4}+1}{y^{2}}$
b) $\left(y+\frac{1}{y}\right)^{2}$
c) $\left(y-\frac{1}{y}\right)^{2}+2$
d) $\left(y+\frac{1}{y}\right)^{2}-2$
6. $\frac{x}{x^{2}-25}-\frac{8}{x^{2}+6 x+5}$
a) $\frac{x^{2}-7 x+40}{(x-5)(x+5)}$
b) $\frac{x^{2}+7 x+40}{(x-5)(x+5)(x+1)}$
c) $\frac{x^{2}-7 x+40}{\left(x^{2}-25\right)(x+1)}$
d) $\frac{x^{2}+10}{\left(x^{2}-25\right)(x+1)}$
7. The square root of $\frac{256 x^{8} y^{4} z^{10}}{25 x^{6} y^{6} z^{6}}$ is equal to
a) $\frac{16}{5}\left\lfloor\frac{x^{2} z^{4}}{y^{2}}\right\rfloor$
b) $16\left\lfloor\frac{y^{2}}{x^{2} z^{4}}\right\rfloor$
c) $\frac{16}{5}\left\lfloor\frac{y}{x z^{2}}\right\rfloor$
d) $\frac{16}{5}\left\lfloor\frac{x z^{2}}{y}\right\rfloor$
8. Which of the following should be added to make $x^{4}+64$ a pefect square
a) $4 x^{2}$
b) $16 x^{2}$
c) $8 x^{2}$
d) $-8 x^{2}$
9. The solution of $(2 x-1)^{2}=9$ is equal to
a) -1
b) 2
c) $-1,2$
d) None of these
10. The values of a and b if $4 x^{4}-24 x^{3}+76 x^{2}+a b+b$ is a perfect square are
a) 100,120
b) 10,12
c) $-120,100$
d) 12,10
11. If the roots of the equation $q^{2} x^{2}+p^{2} x+r^{2}=0$ are the squares of the roots of the equation $q x^{2}+p x+r=0$, then q, p, r are in
a) A. P
b) $G . P$
c) Both A.P and G.P
d) None of these
12. Graph of a linear polynomial is a
a) straight line
b) circle
c) parabola
d) hyperbola
13. The number of points of intersection of the quadratic polynomial $x^{2}+4 x+4$ with the X-axis is
a) 0
b) 1
c) 0 or 1
d) 2
14. For the given matrix $A=\left(\begin{array}{rrrr}1 & 3 & 5 & 7 \\ 2 & 4 & 6 & 8 \\ 9 & 11 & 13 & 15\end{array}\right)$ the order of the matri A^{T} is
a) 2×3
b) 3×2
c) 3×4
d) 4×3
15. If A is a 2×3 matrix and B is a 3×4 matrix, how many columns does $A B$ have
a) 3
b) 4
c) 2
d) 5
16. If number of columns and rows are not equal in a matrix then it is said to be a
a) diagonal matrix
b) rectangular matrix
c) square matrix
d) identity matrix
17. Transpose of a column matrix is
a) unit matrix
b) diagonal matrix
c) column matrix
d) row matrix
18. Find the matrix X if $2 X+\left(\begin{array}{ll}1 & 3 \\ 5 & 7\end{array}\right)=\left(\begin{array}{ll}5 & 7 \\ 9 & 5\end{array}\right)$
a) $\left(\begin{array}{cc}-2 & -2 \\ 2 & -1\end{array}\right)$
b) $\left(\begin{array}{rr}2 & 2 \\ 2 & -1\end{array}\right)$
c) $\left(\begin{array}{ll}1 & 2 \\ 2 & 2\end{array}\right)$
d) $\left(\begin{array}{ll}2 & 1 \\ 2 & 2\end{array}\right)$
19. Which of the following can be calculated from the given matrices

$$
A=\left(\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right), \quad B=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right) \quad \text { (i) } A^{2} \quad \text { (ii) } B^{2} \quad \text { (iii) } A B \quad \text { (iv) } B A
$$

a) (i) and (ii) only
b) (ii) and (iii) only
c) (ii) and (iv) only
d) all of these
20. If $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1\end{array}\right), \quad B=\left(\begin{array}{rr}1 & 0 \\ 2 & -1 \\ 0 & 2\end{array}\right)$ and $C=\left(\begin{array}{rr}0 & 1 \\ -2 & 5\end{array}\right)$ Which of the following statements are correct (i) $A B+C=\left(\begin{array}{ll}5 & 5 \\ 5 & 5\end{array}\right)$
(iii) $B A+C=\left(\begin{array}{ll}2 & 5 \\ 3 & 0\end{array}\right)$
(ii) $B C=\left(\begin{array}{rr}0 & 1 \\ 2 & -3 \\ -4 & 10\end{array}\right)$
$10^{7 H}$ MATHS
(iv) $(A B) C=\left(\begin{array}{ll}-8 & 20 \\ -8 & 13\end{array}\right)$
a) (i) and (ii) only
b) (ii) and (iii) only
c) (iii) and (iv) only
d) all of these

CHAPTER - 4

1. If in triangles $A B C$ and $E D F, \frac{A B}{D E}=\frac{B C}{F D}$ then they will be similar, when
a) $\angle B=\angle E$
b) $\angle A=\angle D$
c) $\angle B=\angle D$
d) $\angle A=\angle F$
2. In $\triangle L M N, \angle L=60^{\circ}, \angle M=50^{\circ}$, If $\triangle L M N \sim \triangle P Q R$ then the value of $\angle R$ is
a) 40°
b) 70°
c) 30°
d) 110°
3. If $\triangle A B C$ is an isosceles triangle with $\angle C=90^{\circ}$ and $A C=5 \mathrm{~cm}$, then $A B$ is
a) 2.5 cm
b) 5 cm
c) 10 cm
d) $5 \sqrt{2} \mathrm{~cm}$
4. In a given figure $S T|\mid Q R, P S=2 \mathrm{~cm}$ and $S Q=3 \mathrm{~cm}$. Then the ratio of the area of $\triangle P Q R$ to the area of \triangle PST is
a) $25: 4$
b) $25: 7$
b) $25: 13$
c) $25: 11$

5. The perimeters of two similar triangles $\triangle A B C$ and $\triangle P Q R$ are 36 cm and 24 cm respectively. If $P Q=10 c$, then the length of $A B$ is
a) $6 \frac{2}{3} \mathrm{~cm}$
b) $\frac{10 \sqrt{6}}{3} \mathrm{~cm}$
c) $66 \frac{2}{3} \mathrm{~cm}$
d) 15 cm
6. If in $\triangle A B C, D E| | B C, A B=3.6 \mathrm{~cm}, A C=2.4 \mathrm{~cm}$ and $A D=2.1 \mathrm{~cm}$ then the length of $A E$ is
a) 1.4 cm
b) 1.8 cm
c) 1.2 cm
d) 1.05 cm
7. In a $\triangle A B C, A D$ is the bisector of $\angle B A C$. If $A B=8 \mathrm{~cm}, B D=6 \mathrm{~cm}$ and $D C=3 \mathrm{~cm}$. The length of the side $A C$ is
a) 6 cm
b) 4 cm
c) 3 cm
d) 8 cm
8. In the adjacent figure $\angle B A C=90^{\circ}$ and
$A D \perp B C$ then
a) $B D \cdot C D=B C^{2}$
b) $A B . A C=B C^{2}$
c) $B D \cdot C D=A D^{2}$
d) $A B \cdot A C=A D^{2}$

9. Two poles of heights 6 m and 11 m stand vertically on the plane ground. If the distance between their feet is 12 m , what is the distance between their tops ?
a) 13 m
b) 14 m
c) 15 m
d) 12.8 m
10. In the given figure, $P R=26 \mathrm{~cm}, Q R=24 \mathrm{~cm}$, $\angle P A Q=90^{\circ}, P A=6 \mathrm{~cm}$ and $Q A=8 \mathrm{~cm}$. Find $\angle P Q R$
a) 80°
b) 85°
c) 75°
d) 90°
11. A tangent is perpendicular to the radius at the
a) centre
b) point of contact
c) infinity
d) chord.
12. How many tangents can be drawn to the circle from an exterior point ?
a) one
b) two
c) infinite
d) zero
13. The two tangents from an external points P to a circle with centre at O are $P A$ and $P B$. If $\angle A P B=$ 70° then the value of $\angle A O B$ is
a) 100°
b) 110°
c) 120°
d) 130°
14. In the figure $C P$ and $C Q$ are tangents to a circle with centre at O. $A R B$ is another touching the circle at R. If $C P=11 \mathrm{~cm}$ and $B C=7 \mathrm{~cm}$, then the length of $B R$ is

a) 6 cm
b) 5 cm
c) 8 cm
d) 4 cm
15. In figure if $P R$ is tangent to the circle at P and O is the centre of the circle, then $\angle P O Q$ is
a) 120°
b) 100°
c) 110°
d) 90°

CHAPTER - 5

1. The area of triangle formed by the points $(-5,0),(0,-5)$ and $(5,0)$ is
a) 0 sq. units
b) 25 sq. units
c) 5 sq. units
d) none of these
2. A man walks near a wall, such that the distance between him and the wall is 10 units. Consider the wall to be the Y axis. The path travelled by the man is
a) $x=10$
b) $y=10$
c) $x=0$
d) $y=0$
3. The straight line given by the equation $x=11$ is
a) parallel to X axis
b) parallel to Y axis
c) passing through the origin
d) passing through the point (0,11)
4. If $(5,7),(3, p)$ and $(6,6)$ are collinear, then the value of p is
a) 3
b) 6
c) 9
d) 12
5. The point of intersection of $3 x-y=4$ and $x+y=8$ is
a) $(5,3)$
b) $(2,4)$
c) $(3,5)$
d) $(4,4)$
6. The slope of the line joining $(12,3),(4, a)$ is $\frac{1}{8}$. The value of ' a ' is
a) 1
b) 4
c) -5
d) 2
7. The slope of the line which is perpendicular to line joining the points $(0,0)$ and $(-8,8)$ is
a) -1
b) 1
c) $\frac{1}{3}$
d) -8
8. The slope of the line $P Q$ is $\frac{1}{\sqrt{3}}$ then the slope of perpendicular bisector of $P Q$ is
a) $\sqrt{3}$
b) $-\sqrt{3}$
c) $\frac{1}{\sqrt{3}}$
d) 0
9. If A is a point on the Y axis whose ordinate is 8 and B is a point on the X axis whose abscissae is 5 then the equation of the line $A B$ is
a) $8 x+5 y=40$
b) $8 x-5 y=40$
c) $x=8$
d) $y=5$
10. The equation of a line passing through the origin and perpendiuclar to the line $7 x-3 y+4=0$ is
a) $7 x-3 y+4=0$
b) $3 x-7 y+4=0$
c) $3 x+7 y=0$
d) $7 x-3 y=0$
11. Consider four straight lines
(i) $l_{1}: 3 y=4 x+5$
(ii) $l_{2}: 4 y=3 x-1$
(iii) $l_{3}: 4 y+3 x=7$
(iv) $l_{4}: 4 x+3 y=2$

Which of the following statement is true ?
a) $l_{1} \& l_{2}$ are perpendicular
b) $l_{1} \& l_{4}$ are parallel
c) $l_{2} \& l_{4}$ are perpendicular
d) $l_{2} \& l_{3}$ are parallel
12. A straight line has equation $8 y=4 x+21$. Which of the following is true
a) The slope is 0.5 and the y intercept is 2.6
b) The slope is 5 and the y intercept is 1.6
c) The slope is 0.5 and the y intercept is 1.6
d) The slope is 5 and the y intercept is 2.6
13. When proving that a quadrilateral is trapezium, it is necessary to show
a) Two sidies are parallel
b) Two parallel and two non parallel sides
c) Opposite sides are parallel
d) all sides are of equal length
14. When proving that a quadrilateral is a parallelogram by using slopes you must find
a) The slopes of four sides
b) The slopes of two pair of opposite sides
c) The lengths of all sides
d) Both the lengths and slopes of two sides
15. $(2,1)$ is the point of intersection of two lines
a) $x-y-3=0 ; 3 x-y-7=0$
b) $x+y=3 ; \quad 3 x+y=7$
c) $3 x+y=3 ; x+y=7$
d) $x+3 y-3=0 ; x-y-7=0$

CHAPTER - 6

1. The value of $\sin ^{2} \theta+\frac{1}{1+\tan ^{2} \theta}$ is equal to
a) $\tan ^{2} \theta$
b) 1
c) $\cot ^{2} \theta$
d) 0
2. $\tan \theta \operatorname{cosec}^{2} \theta-\tan \theta$ is equal to
a) $\sec \theta$
b) $\cot ^{2} \theta$
c) $\sin \theta$
d) $\cot \theta$
3. If $(\sin \alpha+\operatorname{cosec} \alpha)^{2}+(\cos \alpha+\sec \alpha)^{2}=k+\tan ^{2} \alpha+\cot ^{2} \alpha$, then the value of k is equal to
a) 9
b) 7
c) 5
d) 3
4. If $\sin \theta+\cos \theta=a$ and $\sec \theta+\operatorname{cosec} \theta=b$, then the value of $b\left(a^{2}-1\right)$ is equal to
a) $2 a$
b) $3 a$
c) 0
d) $2 a b$
5. If $5 x=\sec \theta$ and $\frac{5}{x}=\tan \theta$, then $x^{2}-\frac{1}{x^{2}}$ is equal to
a) 25
b) $\frac{1}{25}$
c) 5
d) 1
6. If $\sin \theta=\cos \theta$, then $2 \tan ^{2} \theta+\sin ^{2} \theta-1$ is equal to
a) $\frac{-3}{2}$
b) $\frac{3}{2}$
c) $\frac{2}{3}$
d) $\frac{-2}{3}$
7. If $x=a$ tan θ and $y=b \sec \theta$ then
a) $\frac{y^{2}}{b^{2}}-\frac{x^{2}}{a^{2}}=1$
b) $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
c) $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
d) $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=0$
8. $(1+\tan \theta+\sec \theta)(1+\cot \theta-\operatorname{cosec} \theta)$ is equal to
a) 0
b) 1
c) 2
d) -1
9. $a \cot \theta+b \operatorname{cosec} \theta=p$ and $b \cot \theta+a \operatorname{cosec} \theta=q$ then $p^{2}-q^{2}$ is equal to
a) $a^{2}-b^{2}$
b) $b^{2}-a^{2}$
c) $a^{2}+b^{2}$
d) $b-a$
10. If the ratio of the height of a tower and the length of its shadow is $\sqrt{3}: 1$, then the angle of elevation of the sun has measure
a) 45°
b) 30°
c) 90°
d) 60°
11. The electric pole subtends an angle of 30° at a point on the same level as its foot. At a second point'b' meters above the first, the depression of the foot of the tower is 60°. The height of the tower (in meters) is equal to
a) $\sqrt{3} b$
b) $\frac{b}{3}$
c) $\frac{b}{2}$
d) $\frac{b}{\sqrt{3}}$
12. A tower is 60 m height. Its shadow is x meters shorter when the sun's altitude is 45° then when it has been 30°, then ' x ' is equal to
a) 41.92 m
b) 43.92 m
c) 43 m
d) 45.6 m
13. The angle of depression of the top and bottom of 20 m tall building from the top of a multistoried building are 30° and 60° respectively. The height of the multistoried building and distance between two buildings (in meters) is
a) $20,10 \sqrt{3}$
b) $30,5 \sqrt{3}$
c) 20,10
d) $30,10 \sqrt{3}$
14. Two persons are standing ' x ' meters apart from each other and the height of the first person is double that of the other. If from the middle point of the line joining their feet an observer finds the angular elevations of their tops to be complementary, then the height of the shorter person (in meters) is
a) $\sqrt{2} x$
b) $\frac{x}{2 \sqrt{2}}$
c) $\frac{x}{\sqrt{2}}$
d) $2 x$
15. The angle of elevation of a cloud from a point h meters above a lake is β. The angle of depression of its reflection in the lake is 45°. The height of location of the cloud from the lake is
a) $\frac{h(1+\tan \beta)}{1-\tan \beta}$
b) $\frac{h(1-\tan \beta)}{1+\tan \beta}$
c) $h \tan \left(45^{\circ}-\beta\right)$
d) none of these

CHAPTER - 7

1. The curved surface area of a right circular cone of height 15 cm and base diameter 16 cm is
a) $60 \pi \mathrm{~cm}^{2}$
b) $68 \pi \mathrm{~cm}^{2}$
c) $120 \pi \mathrm{~cm}^{2}$
d) $136 \pi \mathrm{~cm}^{2}$
2. If two solid hemispheres of same base radius ' r ' units are joined together along their bases, then curved surface area of this new solid is
a) $4 \pi r^{2}$ sq. units
b) $6 \pi r^{2}$ sq. units
c) $3 \pi r^{2}$ sq. units
d) $8 \pi r^{2}$ sq. units
3. The height of a right circular cone whose radius is 5 cm and slant height is 13 cm will be
a) 12 cm
b) 10 cm
c) 13 cm
d) 5 cm
4. If the radius of the base of a right circular cylinder is halved keeping the same height, then the ratio of the volume of the cylinder thus obtained to the volume of original cylinder is
a) $1: 2$
b) $1: 4$
c) $1: 6$
d) $1: 8$
5. The total surface area of a cylinder whose radius is $\frac{1}{3}$ of its height is
a) $\frac{9 \pi h^{2}}{8}$ sq. units
b) $24 \pi h^{2}$ sq. units
c) $\frac{8 \pi h^{2}}{9}$ sq. units
d) $\frac{56 \pi h^{2}}{9}$ sq. units
6. In a hollow cylinder, the sum of the external and internal radii is 14 cm and the width is 4 cm . If its height is 20 cm , the volume of the material in it is.
a) $5600 \pi \mathrm{~cm}^{3}$
b) $11200 \pi \mathrm{~cm}^{3}$
c) $56 \pi \mathrm{~cm}^{3}$
d) $3600 \pi \mathrm{~cm}^{3}$
7. If the radius of the base of a cone is tripled and the height is doubled then the volume is
a) made 6 times
b) made 18 times
c) made 12 times
d) unchanged
8. The total surface area of a hemi - sphere is how much times the square of its radius
a) π
b) 4π
c) 3π
d) 2π
9. A solid sphere of radius ' x ' cm is melted and cast into a shape of a solid cone of same radius. The height of the cone is
a) $3 x \mathrm{~cm}$
b) $x \mathrm{~cm}$
c) $4 x \mathrm{~cm}$
d) $2 x \mathrm{~cm}$
10. A frustum of a right circular cone is of height 16 cm with radii of its ends as 8 cm and 20 cm . Then, the volume of the frustum is
a) $3328 \pi \mathrm{~cm}^{3}$
b) $3228 \pi \mathrm{~cm}^{3}$
c) $3240 \pi \mathrm{~cm}^{3}$
d) $3340 \pi \mathrm{~cm}^{3}$
11. A shuttle cock used for playing badminton has the shape of the combination of
a) a cylinder and a sphere
b) a hemisphere and a cone
c) a sphere and a cone
d) frustum of a cone and a hemisphere
12. A spherical ball of radius r_{1} units is melted to make 8 new identical balls each of radius r_{2} units. Then $r_{1}: r_{2}$ is
a) $2: 1$
b) $1: 2$
c) $4: 1$
d) $1: 4$
13. The volume (in cm^{3}) of the greatest sphere that can be cut off from a cylindrical log of wood of base radius 1 cm and height 5 cm is
a) $\frac{4}{3} \pi$
b) $\frac{10}{3} \pi$
c) 5π
d) $\frac{20}{3} \pi$
14. The height and radius of the cone of which the frustum is part are h_{1} units and r_{1} units respectively. Height of the frustum is h_{2} and radius of the smaller base r_{2} units.
If $h_{1}: h_{2}=1: 2$ then $r_{1}: r_{2}$ is
a) $1: 3$
b) $1: 2$
c) $2: 1$
d) $3: 1$
15. The ratio of the volumes of a cylinder, a cone and a sphere, if each has the same diameter and same height is
a) $1: 2: 3$
b) $2: 1: 3$
c) $1: 3: 2$
d) $3: 1: 2$

CHAPTER - 8

1. Which of the following is not a measure of dispersion?
a) Range
b) Standard deviation
c) Arithmetic mean
d) Variance
2. The range of the data $8,8,8,8,8$, .8 is
a) 0
b) 1
c) 8
d) 3
3. The sum of all deviations of the data from its mean is
a) Always positive
b) always negative
c) zero
d) non - zero integer
4. The mean of 100 observations is 40 and their standard deviation is 3 . The sum of squares of all deviations is
a) 40000
b) 160900
c) 160000
d) 30000
5. Variance of first 20 natural numbers is
a) 32.25
b) 44.25
c) 33.25
d) 30
6. The standard deviation of a data is 3. If each value is multipled by 5 then the new variance is
a) 3
b) 15
c) 5
d) 225
7. If the standard deviation of x, y, z is ' p ' then the standard deviation $3 x+5,3 y+5,3 z+5$ is
a) $3 p+5$
b) $3 p$
c) $p+5$
d) $9 p+15$
8. If the mean and coefficient of variation of a data are 4 and 87.5% then the standard deviation is
a) 3.5
b) 3
c) 4.5
d) 2.5
9. Which of the following is incorrect ?
a) $P(A)>1$
b) $0 \leq P(A) \leq 1$
c) $P(\phi)=0$
d) $P(A)+P(\bar{A})=1$
10. The probability a red marble selected at random from a jar conotaining ' p ' red, ' q ' blue and ' r ' green marbles is
a) $\frac{q}{p+q+r}$
b) $\frac{p}{p+q+r}$
c) $\frac{p+q}{p+q+r}$
d) $\frac{p+r}{p+q+r}$
11. A page is slected at random from a book. The probability that the digit at units place of the page number chosen is less than 7 is
a) $\frac{3}{10}$
b) $\frac{7}{10}$
c) $\frac{3}{9}$
d) $\frac{7}{9}$
12. The probability of getting a job for a person is $\frac{x}{3}$. If the probability of not getting the job is $\frac{2}{3}$ then the value of ' x ' is
a) 2
b) 1
c) 3
d) 1.5
13. Kamalam went to play a lucky draw contest. 135 tickets of the lucky draw were sold. If the probability of Kamalam winning is $\frac{1}{9}$, then the number of tickets bought by Kamalam is
a) 5
b) 10
c) 15
d) 20
14. If a letter is chosen at random from the English alphabets $\{a, b, c, \ldots, z\}$, then the probability that the letter chose precedes ' x '
a) $\frac{12}{13}$
b) $\frac{1}{13}$
c) $\frac{23}{26}$
d) $\frac{3}{26}$
15. A purse contains 10 notes of $₹ 2000,15$ notes $₹ 500$ and 25 notes of ₹ 200 . One note is drawn at random. What is the probability that the note is either a ₹ 500 note or $₹ 200$ note ?
a) $\frac{1}{5}$
b) $\frac{3}{10}$
c) $\frac{2}{3}$
d) $\frac{4}{5}$

ANSWERS

CHAPTER - 1

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
c	c	a	b	c	a	c	a	c	c	a	d	c	b	d

CHAPTER-2

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
c	a	b	c	d	a	d	c	a	c	c	d	b	b	c

CHAPTER - 3

1	2	3	4	5	6	7	8	9	10
d	a	b	a	b	c	d	b	c	c
11	12	13	14	15	16	17	18	19	20
b	a	b	c	b	b	d	b	b	a

CHAPTER - 4

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
c	b	d	a	d	a	b	c	a	d	b	b	b	d	a

CHAPTER - 5

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
b	a	b	c	c	d	b	b	a	c	c	a	b	a	b

CHAPTER-6

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
b	d	b	a	b	b	a	c	b	d	b	b	d	b	a

CHAPTER-7

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
d	a	a	b	c	b	b	c	c	a	d	a	a	b	d

CHAPTER - 8

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
c	a	c	b	c	d	b	a	a	b	b	b	c	c	d

CHAPTER - 1

1. If $A=\{1,3,5\}$ and $B=\{2,3\}$ then find (i) $A \times B$ and (ii) $B \times A$ Answer:
Given that $A=\{1,3,5\}$ and $B=\{2,3\}$
(i) $A \times B=\{1,3,5\} \times\{2,3\}=\{(1,2),(1,3),(3,2),(3,3),(5,2),(5,3)$,
(ii) $B \times A=\{2,3\} \times(1,3,5\}=\{(2,1),(2,3),(2,5),(3,1),(3,3),(3,5)$,
2. If $A \times B=\{(3,2),(3,4),(5,2),(5,4)\}$ then find A and B.

Answer:
We have $A=\{$ set of all first coordinates of the elements of $A \times B\}=\{3,5\}$
$B=\{$ Set of all second coordinates of the elements of $A \times B\}=\{2,4\}$
3. Let $A=\{x \in N \mid 1<x<4\}, B=\{x \in W \mid 0 \leq x<2\}$ and $C=\{x \in N \mid x<3\}$ then verify that (i) $A x(B \cup C)=(A x B) \cup(A x C)$ (ii) $A x(B \cap C)=(A x B) \cap(A x C)$

Answer:
Given : $A=\{2,3\}, B=\{0,1\}$ and $C=\{1,2\}$
(i) $A \times(B \cup C)=(A \times B) \cup(A \times C)$

LHS: $A x(B \cup C)$
($B \cup C$)
$=\{0,1\} \cup\{1,2\}$
$=\{0,1,2\}$
$A \times(B \cup C)=\{2,3\} \times\{0,1,2\}=\{(2,0),(2,1),(2,2),(3,0),(3,1),(3,2)\}$

RHS: (AxB)U(AxC)

$$
\begin{array}{ccc}
(A \times B) & =\{2,3\} \times\{0,1\} & =\{(2,0),(2,1),(3,0),(3,1)\} \\
(A \times C) & =\{2,3) \times\{1,2\} & =\{(2,1),(2,2),(3,1),(3,2)\} \\
(A \times B) \cup(A \times C) & = & \{(2,0),(2,1),(3,0),(3,1)\} \cup\{(2), 1),(2,2),(3,1),(3,2)\} \\
& \{(2,0),(2,1),(2,2),(3,0),(3,1),(3,2)\}--------(2)
\end{array}
$$

From (1) and (2) LHS $=$ RHS that is $A \times(B \cup C)=(A \times B) \cup(A \times C)$
(ii) $A \times(B \cap C)=(A \times B) \cap(A \times C)$

LHS: $A x(B \cap C)$
$(B \cap C)=\{0,1\} \cap\{1,2\}=\{1\}$
$A \times(B \cap C)=\{2,3\} \times\{1\}=\{(2,1),(3,1)\}$
RHS: $(A \times B) \cap(A \times C)$

From (1) and (2) LHS $=$ RHS that is
$A x(B \cap C)=(A \times B) \cap(A \times C)$
4. Find $A \times B, A \times A, B \times A$ and $B \times B$
(i) $A=\{2,-2,3\}$ and $B\{1,-4\}$
(ii) $A=B=\{p, q\}$
(iii) $A=\{m, n\}$ and $B=\phi$

Answer:

(i) If $A=\{2,-2,3)$ and $B(1,-4)$

$$
\begin{array}{rlrl}
A \times B= & \{2,-2,3\} \times\{1,-4\} \\
A \times A= & \{2,-2,3\} \times\{2,-2,3\} & = & \{(2,1),(2,-4),(-2,1),(-2,-4),(3,1),(3,-4)\} \\
& =\{(2,2),(2,-2),(2,3),(-2,2),(-2,-2),(-2,3),(3,2), \\
& (3,-2),(3,3)\}
\end{array}
$$

$$
\begin{aligned}
B \times A & =\{1,-4\} \times\{2,-2,3\} \\
B \times B & =\{1,-4\} \times\{1,-4\}
\end{aligned}
$$

(ii) If $A=\{p, q\}$ and $B=\{p, q\}$
$A \times B=\{p, q\} \times\{p, q\}$
$A \times A=\{p, q\} \times\{p, q\}$
$B \times A=\{p, q\} \times\{p, q\}$
$B \times B=\{p, q\} \times\{p, q\}$
(iii) $A=\{m, n\}$ and $B=\{ \}$ or ϕ

$$
\begin{aligned}
A \times B & =\{m, n\} \times\{ \} \\
A \times A & =\{m, n\} \times\{m, n\} \\
B \times A & =\{ \} \times\{m, n\} \\
B \times B & =\{ \} \times\{ \}
\end{aligned}
$$

$$
\begin{aligned}
& =\{(1,2),(1,-2),(1,3),(-4,2),(-4,-2),(-4,3\} \\
& =\{(1,1),(1,-4),(-4,1),(-4,-4)
\end{aligned}
$$

$=\{(p, p),(p, q),(q, p),(q, q)\}$

$$
=\{ \} \text { or } \phi
$$

$$
=\{(m, m),(m, n),(n, m),(n, n)\}
$$

$$
=\{ \} \text { or } \phi
$$

$$
=\{ \} \text { or } \phi
$$

5. Let $A=\{1,2,3\}$ and $B=\{x \mid x$ is a prime number less than 10$\}$. Find $A x B$ and $B x A$ Answer:
Given $A=\{1,2,3\}$ and $B=\{2,3,5,7\}$
(i) $A \times B=\{1,2,3\} \times\{2,3,5,7\}=\{(1,2),(1,3),(1,5),(1,7),(2,2),(2,3),(2,5),(2,7),(3,2),(3,3),(3,5),(3,7)\}$
(ii) $B \times A=\{2,3,5,7\} \times\{1,2,3\}=\{(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(5,1),(5,2),(5,3),(7,1),(7,2),(6,3)\}$
6. If $B \times A=\{(-2,3),(-2,4),(0,3),(0,4),(3,3),(3,4)\}$ find A and B

Answer:
Given : $\quad B \times A=\{(-2,3),(-2,4),(0,3),(0,4),(3,3),(3,4)\}$

$$
A=\{3,4\} \text { and } B=\{-2,0,3\}
$$

7. If $A=\{5,6\}, B=\{4,5,6\}, C=\{5,6,7\}$. Show that $A \times A=(B \times B) \cap(C \times C)$.

Answer:
Given : $A=\{5,6\}, B=\{4,5,6\}$ and $C=\{5,6,7\}$
RHS: $\boldsymbol{A} \times \boldsymbol{A}=\{5,6\} \times\{5,6\}=\{(5,5),(5,6),(6,5),(6,6)\}$
LHS: ($B \times B) \cap(C \times C)$
$(B \times B)=\{4,5,6\} \times\{4,5,6\}=\{(4,4),(4,5),(4,6),(5,4),(5,5),(5,6),(6,4),(6,5),(6,6)\}$
$(C \times C)=\{5,6,7\} \times\{5,6,7\}=\{(5,5),(5,6),(5,7),(6,5),(6,6),(6,7),(7,5),(7,6),(7,7)\}$
$(B \times B) \cap(C \times C)$
$=\{(5,5),(5,6),(6,5),(6,6)\}$
From (1) and (2) LHS $=$ RHS that is

$$
A \times A=(B \times B) \cap(C \times C)
$$

8. Given $A=\{1,2,3\}, B=\{2,3,5\}, C=\{3,4\}$ and $D\{1,3,5\}$, check if $(A \cap C) \times(B \cap D)=(A \times B) \cap(C \times D)$ is true?

Answer:

Given : $A=\{1,2,3\}, B=\{2,3,5\}, C=\{3,4\}$ and $D\{1,3,5\}$,
$L H S=(A \cap C) x(B \cap D)$
$A \cap C=\{1,2,3\} \cap\{3,4\} \quad=\{3\} \quad(B \cap D\}=\{2,3,5\} \cap\{1,3,5\} \quad=\{3,5\}$
$(A \cap C) x(B \cap D)=\{3\} x\{3,5\}=\{(3,3),(3,5)\}$
$R H S=(A \times B) \cap(C \times D)$
$A \times B=\{1,2,3\} \times\{2,3,5\}=\{(1,2),(1,3),(1,5),(2,2),(2,3),(2,5),(3,2),(3,3),(3,5)\}$
$C \times D=\{3,4\} \times\{1,3,5\}=\{(3,1),(3,3),(3,5),(4,1),(4,3),(4,5)\}$
$(A \times B) \cap(C \times D)$
From (1) and (2)
$=\{(3,3),(3,5)\}$
LHS $=$ RHS that is
$(A \cap C) x(B \cap D)=(A x B) \cap(C x D)$
9. Let $A=\{x \in W \mid x<2\}, B=\{x \in N \mid 1<x \leq 4\}$ and $C=\{3,5\}$. Verify that
(i) $A \times(B \cup C)=(A \times B) U(A \times C)$
(ii) $A \times(B \cap C)=(A \times B) \cap(A \times C)$
(iii) $(A \cup B) x C=(A x C) \cup(B \times C)$

Answer:
Given : $\quad A=\{0,1\}, B=\{2,3,4\}$ and $C=\{3,5\}$
(i) $A \times(B \cup C)=(A \times B) \cup(A \times C)$

LHS: Ax(BUC)
$(B \cup C)=\{2,3,4\} \cup\{3,5\}=\{2,3,4,5\}$
$A x(B \cup C)=\{0,1\} x\{2,3,4,5\}=\{(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5)\}$
RHS: (AxB)U(AxC)
$(A \times B)=\{0,1\} \times\{2,3,4\}=\{(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)\}$
$(A \times C)=\{0,1\} \times\{3,5\}=\{(0,3),(0,5),(1,3),(1,5)\}$
$(\boldsymbol{A} \times \boldsymbol{B}) \cup(\boldsymbol{A} \times \boldsymbol{C})=\{(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5)\}$
From (1) and (2) LHS = RHS that is $A \times(B \cup C)=(A \times B) \cup(A \times C)$
(ii) $A \times(B \cap C)=(A \times B) \cap(A \times C)$
$L H S: A x(B \cap C)$
$(B \cap C) \quad=\{2,3,4\} \cap\{3,5\}=\{3\}$
$A x(B \cap C)=\{0,1\} x\{3\}=\{(0,3),(1,3)\}$
$R H S:(A \times B) \cap(A \times C)$

(iii) $(A \cup B) \times C=(A \times C) \cup(B \times C)$

LHS: ($\boldsymbol{A} \cup B) \times C$
$(A \cup B)=\{0,1\} \cup\{2,3,4\}=\{0,1,2,3,4\}$
$(\boldsymbol{A} \cup B) \times \boldsymbol{C}=\{0,1,2,3,4\} \times\{3,5\}=\{(0,3),(0,5),(1,3),(1,5),(2,3),(2,5),(3,3),(3,5),(4,3)$,
(4,5)\}----------------- (1)
RHS: (AxC)U(BxC)
$(A \times C)=\{0,1\} \times\{3,5\}=\{(0,3),(0,5),(1,3),(1,5)\}$
$(B \times C)=\{2,3,4\} \times\{3,5\}=\{(2,3),(2,5),(3,3),(3,5),(4,3),(4,5)\}$
$(\boldsymbol{A} \times \boldsymbol{C}) \boldsymbol{U}(\boldsymbol{B} \times \boldsymbol{C})=\{(0,3),(0,5),(1,3),(1,5),(2,3),(2,5),(3,3),(3,5),(4,3),(4,5)\}$
From (1) and (2) LHS = RHS that is
$(\boldsymbol{A} \boldsymbol{U}) \times \boldsymbol{C}=(\boldsymbol{A} \times \boldsymbol{C}) \boldsymbol{U}(\boldsymbol{B} \times \boldsymbol{C})$
10. Let $A=$ The set of all natural numbers less than $8, B=$ The set of all prime numbers less than 8 and $C=$ The set of even prime number. Verify that
(i) $(A \cap B) \times C=(A \times C) \cap(B \times C)$
(ii) $A x(B-C)=(A \times B)-(A \times C)$

Answer:
Given : $A=\{1,2,3,4,5,6,7\}, B=\{2,3,5,7\}$ and $C=\{2$,
(i) $(A \cap B) \times C=(A \times C) \cap(B \times C)$

LHS: $(A \cap B) x C$

RHS: ($\mathrm{A} \times \mathrm{C}) \cap(B \times C)$
$\boldsymbol{A} \boldsymbol{x} \boldsymbol{C}=\{1,2,3,4,5,6,7\} \times\{2\}=,\{(1,2),(2,2),(3,2),(4,2),(5,2),(6,2),(7,2)\}$
$B \times C=\{2,3,5,7\} \times\{2\}=\{(2,2),(3,2),(5,2),(7,2)\}$
$(A \times C) \cap(B \times C)$
$=\{(2,2),(3,2),(5,2),(7,2)\}$
From (1) and (2)

$$
\begin{equation*}
L H S=\text { RHS that is } \tag{2}
\end{equation*}
$$

$$
(A \cap B) \times C=(A \times C) \cap(B \times C)
$$

(ii) $A \times(B-C)=(A \times B)-(A \times C)$

LHS:Ax(B-C)
$(B-C)=\{2,3,5,7\}-\{2\}=\{3,5,7\}$
$A x(B-C)=\{1,2,3,4,5,6,7\} \times\{3,5,7\}$
$=\{(1,3),(2,3),(3,3),(4,3),(5,3),(6,3),(7,3),(1,5),(2,5),(3,5),(4,5),(5,5),(6,5)$,
$(7,5),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7),(7,7)\}$
RHS: ($\boldsymbol{A} \times \mathbf{B})-(\boldsymbol{A} \times \mathbf{C})$
$(A \times B)=\{\{1,2,3,4,5,6,7\} \times\{2,3,5,7\}$
$=\{(1,2),(1,3),(1,5),(1,7),(2,2),(2,3),(2,5),(2,7),(3,2),(3,3),(3,5),(3,7),(4,2),(4,3)$,
$(4,5),(4,7),(5,2),(5,3),(5,5),(5,7),(6,2),(6,3),(6,5),(6,7),(7,2),(7,3),(7,5),(7,7)\}$
$(A \times C)=\{1,2,3,4,5,6,7\} \times\{2\}$
$=\{(1,2),(2,2),(3,2),(4,2),(5,2),(6,2),(7,2)\}$
$(A x B)-(A x C)=\{(1,3),(2,3),(3,3),(4,3),(5,3),(6,3),(7,3),(1,5),(2,5),(3,5),(4,5)$,
$(5,5),(6,5),(7,5),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7),(7,7)\}$
From (1) and (2)

$$
\begin{equation*}
L H S=\text { RHS that is } \tag{2}
\end{equation*}
$$

$$
A \times(B-C)=(A \times B)-(A \times C)
$$

11. Let $A=\{1,2,3,4\}$ and $B=\{2,5,8,11,14\}$ be two sets. Let $f: A \rightarrow B$ be a function give by $f(x)=3 x-1$. Resresent this function
(i) by arrow diagram
(iii) as a set of ordered pairs
(ii) in a table form
(iv) in a garaphical form

Answer:
Given: $A=\{1,2,3,4\}, B=\{2,5,8,11,14\}$ and $f(x)=3 x-1$
$f(1)=3(1)-1=3-1=2$
$f(2)=3(2)-1=6-1=5$
$f(3)=3(3)-1=9-1=8$
$f(4)=3(4)-1=12-1=11$
(i) An arrow diagram

(ii) a table

x	1	2	3	4
$f(x)$	2	5	8	11

(iii) Set of ordered pairs

$$
f=\{(1,2),(2,5),(3,8),(4,11)\}
$$

(iv) graphical form

12. Using horizontal line test the following given figures, determine which of the following functions are one - one.
(i)

Answer:

(ii)

(iii)

(i) The curves in figure (i) represent a one - one function as the horizonotal lines meet the curves in only one point P.
(ii) The curve in figure (ii) does not represent a one - one function, since the horizontal line meet the curve in two points P and Q
(iii) The curves in figure (iii) represent a one - one function as the horizonotal lines meet the curves in only one point P.
13. Let $A=\{1,2,3\}, B=\{4,5,6,7\}$ and $f=\{(1,4) .(2,5),(3,6)\}$ be a function from A to B. Show that f is one - one but not onto function
Answer:
Given : $A=\{1,2,3\}, B=\{4,5,6,7\}$ and $f=\{(1,4),(2,5),(3,6)\}$ Then f is a function from A to B and for different elements in A, there are different images in B. Hence f is one - one function Note that the element 7 in the co-domain does not have any pre - image in the domain. Hence f is not onto. There fore f is one - one but not an onto function. (or)

f is one - one function \& into function
14. If $A=\{-2,-1,0,1,2$,$\} and f: A \rightarrow B$ is an onto function defined buy $f(x)=x^{2}+x+1$ then find B.

Answer:
Given:

$A=\{-2,-1,0,1,2\}$ and $f(x)=x^{2}+x+1$		
$f(-2)=(-2)^{2}+(-2)+1$	$=4-2+1$	$=3$
$f(-1)=(-1)^{2}+(-1)+1$	$=1-1+1$	$=1$
$f(0)=(0)^{2}+(0)+1$	$=0+0+1$	$=1$
$f(1)=(1)^{2}+(1)+1$	$=1+1+1$	$=3$
$f(2)=(2)^{2}+(2)+1$	$=4+2+1$	$=7$

Since, f is an onto function, range of $f=B=c o$ - domain of f. Therefore, $B=\{1,3,7\}$
15. Let f be function $f: N \rightarrow N$ be defined by $f(x) 3 x+2, x \in N$
(i) Find the images of 1, 2, 3
(ii) Find the pre - images of 29, 53
(iii) Identify the type of function.

Answer: \quad The function $f: N \rightarrow N$ be defined by $f(x) 3 x+2, x \in N$
(i) If $x=1 \quad f(1)=3(1)+2 \quad=3+2=5$

If $x=2 \quad f(2)=3(2)+2 \quad=6+2=8$
If $x=3 \quad f(3)=3(3)+2 \quad=9+2=11$
The images of 1, 2, 3, are 5, 8, 11 respectively.
(ii) If x is the pre - image of 29 , then $f(x)=29$. Hence $3 x+2=29$
$3 x=27 \quad x=27 / 9 \quad$ Therefore $x=9$
Similarly, if x is the preimage of 53 , then $f(x)=53$. Hence $3 x+2=53$
$3 x=51 \quad x=51 / 3 \quad$ Therefore $x=17$
(iii) Since different elements of N have different images in the co - domain, the function f is one - one function.

The co - domain of f is N
But the range of $f=\{5,8,11,14,17 \ldots$.$\} is a proper subset of N$.
Therefore f is not an onto function. That is, f is an into function.
Thus f is one - one and into function.
16. Forensic scientists can determine the height (in cms) of a person based on the length of their thigh bone. They usually do so using the function $h(b)=2.47 b+54.10$ where ' b ' is the length of the thigh bone.
(i) Check if the function ' h ' is one - one
(ii) Also find the hight of a person if the length of his thigh bone is 50 cms .
(iii) Find the length of the thigh bone if the height of a person is 147.96 cms .

Answer:
(i) To check if h is one - one, we assume that $h\left(b_{1}\right)=h\left(b_{2}\right)$.

Then we get,

$$
\begin{array}{ll}
2.47 b_{1}+54.10 & =2.47 b_{2}+54.10 \\
2.47 b_{1} & =2.47 b_{2} \\
b_{1}=b_{2}
\end{array}
$$

Thus, $h\left(b_{1}\right)=h\left(b_{2}\right) \Rightarrow b_{1}=b_{2}$. So the function h is one - one.
(ii) If the length of the thigh bone $b=50$, then the height is
$h(50)=(2.47 \times 50)+54.10=112.50+54.10=177.6 \mathrm{cms}$.
(iii) If the heght of a person is 147.96 cms , then $h(b)=147.96$ and so the length of the thight bone is given by
$2.47 b+54.10=147.96$
$b=\frac{93.86}{2.47}=\frac{93.86 \times 100}{2.47 \times 100}=\frac{9386}{247}=38$
17. Let f be a function from R to R defined by $f(x)=3 x-5$. Find the values of ' a ' and ' b ' given that $(a, 4)$ and $(1, b)$ belong to f.
Answer:
$f(x)=3 x-5$ can be written as $f=\{(x, 3 x-5) \mid x \in R\}$
$(a, 4)$ means the image of a is $4 . \quad$ That is $f(a)=4$

$$
\begin{aligned}
3 a-5=4 & \Rightarrow 3 a=4+5 \\
& \Rightarrow 3 a=9
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow a=\frac{9}{3} \\
& \Rightarrow a=3
\end{aligned}
$$

$(1, b)$ means the image of 1 is b.
That is $f(1)=b$

$$
\begin{array}{ll}
B=-2 & \Rightarrow 3(1)-5 \\
& \Rightarrow 3-5 \\
& =-2
\end{array}
$$

18. The distance S (in kms) travelled by a particle in time ' t ' hours is given by $S(t)=\frac{t^{2}+t}{2}$ Find the distance travlled by the particle after.
(i) three and half hours.
(ii) eight hours and fifteen minutes.

Answer:
The distance travelled by the particle in time t hours is given by $\boldsymbol{S}(\boldsymbol{t})=\frac{\boldsymbol{t}^{2}+\boldsymbol{t}}{2}$
(i) $t=3.5$ hours. Therefore, $S(3.5)=\frac{3.5^{2}+3.5}{2}=\frac{12.25+3.5}{2}=\frac{15.755}{2}=7.875$ The distance travlled in 3.5 hours is 7.875 Kms.
(ii) $t=8.25$ hours. Therefore, $S(8.25)=\frac{8.25^{2}+8.25}{2}=\frac{68.0625+8.25}{2}=\frac{76.3125}{2}=38.15625$ The distance travelled in 8.25 hours is 38.16 Kms , approximately.
19. If the function $f: R \rightarrow R$ defined by $f(x)=\left\{\begin{array}{cc}2 x+7, & x<-2 \\ x^{2}-2, & -2 \leq x<3 \\ 3 x-2, & x \geq 3\end{array} \quad\right.$ Find the values of
(i) $f(4)$
(ii) $f(-2)$
(iii) $f(4)+2 f(1)$
(iv) $\frac{f(1)-3 f(4)}{f(-3)}$

Answer:
(i) $f(4)=3 x-2$

$$
\begin{array}{lll}
=3(4)-2 & =12-2 & =10 \\
=(-2)^{2}-2 & =4-2 & =2
\end{array}
$$

(ii) $f(-2)=x^{2}-2$
(iii) $f(4)+2 f(1)$

$$
f(4)=3 x-2 \quad=3(4)-2 \quad=12-2=10
$$

$$
2 f(1)=x^{2}-1 \quad=2\left[(1)^{2}-2\right]
$$

$$
=2(1-2)=2(-1)=-2
$$

$$
f(4)+2 f(1)=10-2=8
$$

(iv) $\frac{f(1)-3 f(4)}{f(-3)}$

$$
\begin{array}{lrl}
f(1)=-1, & f(4)=10 & \\
f(-3)=2 x+7 & =2(-3)+7 & =-6+7 \\
\frac{f(1)-3 f(4)}{f(-3)} & =\frac{-1-3(10)}{1} & =\frac{-1-30}{1} \quad=\frac{-31}{1}=-31
\end{array}
$$

20. Let $f: A \rightarrow B$ be a function defined by $f(x)=\frac{x}{2}-1$, wehre $A=\{2,4,6,10,12\}$, $B=\{0,1,2,4,5,9\}$. Respresent f by
(i) Set of ordered pairs,
(iii) a graph
(ii) a table
(iv) an arrow diagram

Answer:
Given :
$f(x)=\frac{x}{2}-1, A=\{2,4,6,10,12\}$ and $B=\{0,1,2,4,5,9\}$

$$
\begin{array}{llll}
f(2)=\frac{2}{2}-1=1-1 & =0 & f(4)=\frac{4}{2}-1=2-1 & =1 \\
f(6)=\frac{6}{2}-1=3-1 & =2 & f(10)=\frac{10}{2}-1=5-1 & =4 \\
f(12)=\frac{12}{2}-1=6-1 & =5 &
\end{array}
$$

(i) An arrow diagram

(iv) graphical form

(ii) a table

x	2	4	6	10	12
$f(x)$	0	1	2	4	5

(iii) Set of ordered pairs $\quad f=\{(2,0),(4,1),(6,2),(10,4),(12,5)\}$
21. Represent the function $f=\{(1,2),(2,2),(3,2),(4,3),(5,4)\}$ through
(i) an arrow diagram
(ii) a table form
(iii) a graph

Answer:
Given: $f=\{(1,2),(2,2),(3,2),(4,3),(5,4)\}$
(i) An arrow diagram
(iii) graphical form

(ii) a table

x	1	2	3	4	5
$f(x)$	2	2	2	3	4

22. Show that the function $f: N \rightarrow N$ defined by $f(x)=2 x-1$ is one - one but not onto.

Answer:
Given : $f(x)=2 x-1$

$$
\left.\begin{array}{lll}
N=\{1,2,3,4,5, \ldots
\end{array}\right\}
$$

In the figure, for different elements in x, there are different image in $f(x)$
Hence $f: N \rightarrow N$ is said to be onto fuction if the range of f is equal to the co - domain of f.
But here the range is not equal to co-domain. Therefore it is one - one but not onto function.
23. Show that the function $f: N \rightarrow N$ defined by $f(m)=m^{2}+m+3$ is one - one function.

Answer:
Given : function $f: N \rightarrow N$ defined by $f(m)=m^{2}+m+3$

In the figure, for different elements in the (x) domain, there are differient images in $f(x)$. Hence $f: N \rightarrow N$ is a one - one but not onto function as the range off is not equal to co - domain.
24. Let $A=\{1,2,3,4\}$ and $B=N$. Let $f: A \rightarrow B$ be defined by $f(x)=x^{3}$ then,
(i) find the range of f
(ii) identify the type of function.

Answer:
Given : $A=\{1,2,3,4\}, B=N$ and $f: A \rightarrow B$ be defined by $f(x)=x^{3}$
$f(x)=x^{3}$
$f(1)=1^{3}=1 \quad$ (i) Range of $f=\{1,8,27,64\}$
$f(2)=2^{3} \quad=8$
(ii) It is one - one and into function.
$f(3)=3^{3} \quad=27$
$f(4)=4^{3}=64$
25. In each of the following cases state whether the function is bijective or not. Justify your answer. (i) $f: R \rightarrow R$ defined by $f(x)=2 x+1 \quad$ (ii) $f: R \rightarrow R$ defined by $f(x)=3-4 x^{2}$
Answer:
(i) Given : $f: R \rightarrow R$ defined by $f(x)=2 x+1$

$$
\begin{array}{ll}
f(x)=2 x+1 & \\
f(1)=2(1)+1=2+1=3 & f(2)=2(2)+1=4+1=5 \\
f(-1)=2(-1)+1=-2+1=-1 & f(-2)=2(-2)+1=-4+1=-3
\end{array}
$$

It is a bijective function. Distinct element of A have distinct images in B and every element in B has a pre - image in A.
(ii) Given : $f: R \rightarrow R$ defined by $f(x)=3-4 x^{2}$

$$
\begin{array}{ll}
f(x)=3-4 x^{2} \\
f(1)=3-4(1)^{2}=3-4(1)=3-4=-1 & f(2)=3-4(2)^{2}=3-4(4)=3-16=-13 \\
f(-1)=3-4(-1)^{2}=3-4(1)=3-4=-1 & f(-2)=3-4(-2)^{2}=3-4(4)=3-16=-13
\end{array}
$$

It is not bijective function as the +ve numbers in R do not have pre image in X in R.
26. Let $A=\{-1,1\}$ and $B=\{0,2\}$. If the function $f: A \rightarrow B$ defined by $f(x)=a x+b$ is an onto function? Find ' a ' and ' b '
Answer:
Given : $A=\{-1,1\}$ and $B=\{0,2\}$
$f(x)=a x+b$ is onto function.
$f(-1)=0$
$\Rightarrow a(-1)+b=0$
$f(1)=2 \quad \Rightarrow a(1)+b=2$
Solve (1) and (2) $\quad-a+b=0$

$$
\begin{array}{r}
a+b=2 \\
\hline 2 b=2 \\
b=1
\end{array}
$$

$\Rightarrow-a+b=0$
$\Rightarrow a+b=2$

Substitute ' b ' value in (1) or (2)
$-a+b=0 \quad \Rightarrow-a+1=0$ $\Rightarrow-a=-1$
$a=1$
Therefore $a=1$ and $b=1$
27. If the function f is defined by $f(x)=\left\{\begin{array}{lr}x+2, & x>1 \\ 2, & -1 \leq x \leq 1 \\ x-1, & -3<x<-1\end{array} \quad\right.$ Find the values of
(i) $f(3)$
(ii) $f(0)$
(iii) $f(-1.5)$
(iv) $f(2)+f(-2)$

Answer:
(i) $f(3)=x+2$
$=3+2=5$
(ii) $f(0)=2$
(iii) $f(-1.5)=x-1$
$=(-1.5)-1=-2.5$
(iv) $f(2)+f(-2)$
$f(2)=x+2$
$=2+2=4$
$f(-2)=x-1=(-2)-1=-2-1=-3$
$f(2)+f(-2)=4-3=1$
28. A function $f:[-5,9] \rightarrow R$ is defind as follows $f(x)=\left\{\begin{array}{ll}6 x+1 & \text { if }-5 \leq x<2 \\ 5 x^{2}-1 & \text { if } 2 \leq x<6 \\ 3 x-4 & \text { if } 6 \leq x \leq 9\end{array}\right.$ Find the values of
(i) $f(-3)+f(2)$
(ii) $f(7)-f(1)$
(iii) $2 f(4)+f(8)$
(iv) $\frac{2 f(-2)-f(6)}{f(4)+f(-2)}$

Answer:
(i) $f(-3)+f(2)$

$$
\begin{array}{lllll}
f(-3)=6 x+1 & =6(-3)+1 & =-18+1 & =-17 & \\
f(2)=5 x^{2}-1 & =5(2)^{2}-1 & =5(4)-1 & =20-1 & =19
\end{array}
$$

$$
f(-3)+f(2)=-17+19=2
$$

(ii) $f(7)-f(1)$

$$
\begin{array}{llll}
f(7)=3 x-4 & =3(7)-4 & =21-4 & =17 \\
f(1)=6 x+1 & =6(1)+1 & =6+1 & =7 \\
f(7)-f(1)=17-7 & =10 & &
\end{array}
$$

(iii) $2 f(4)+f(8)$

$$
\begin{array}{lll}
2 f(4)=2\left(5 x^{2}-1\right) & =2\left(5(4)^{2}-1\right) & =2(5(16)-1)=2(80-1)=2(79)=158 \\
f(8)=3 x-4 & =3(8)-4 & =24-4=20 \\
2 f(4)+f(8) & =158+20 & =178
\end{array}
$$

(iv) $\frac{2 f(-2)-f(6)}{f(4)+f(-2)}$

$$
\begin{array}{lcll}
f(-2)=6 x+1 & =6(-2)+1 & =-12+1 & =-11 \\
f(6)=3 x-4 & =3(6)-4 & =18-4 & =14 \\
f(4)=5 x^{2}-1 & =5(4)^{2}-1 & =5(16)-1 & =80-1 \\
\frac{\mathbf{2 f (- 2) - f (6)}}{f(4)+\boldsymbol{f}(-\mathbf{2})}=\frac{\mathbf{2 (- 1 1) - \mathbf { 1 4 }}}{\mathbf{7 9 - 1 1}}=\frac{-\mathbf{- 2 2}-\mathbf{1 4}}{\mathbf{6 8}}=\frac{-\mathbf{3 6}}{\mathbf{6 8}}=\frac{\mathbf{- 9}}{\mathbf{1 7}}
\end{array}
$$

29. The distance S an object travels under the influence of gravity in time ' t ' seconds is given by $S(t)=\frac{1}{2} g t^{2}+a t+b$ where, (g is the acceleration dut to gravity), ' a ', ' b ' are constants. Check if the function $S(t)$ is one - one.
$S(t)=\frac{1}{2} g t^{2}+a t+b$
Let $t=1,2,3$, \qquad seconds
$S(1)=\frac{1}{2} g(1)^{2}+a(1)+b \quad=\frac{1}{2} g+a+b$
$S(2)=\frac{1}{2} g(2)^{2}+a(2)+b=2 g+2 a+b$
Yes, for every different values of t, there will be different values as images. And there will be diffeirent pre images for the different values of the range. Therefore it is one - one function.
30. The function ' t ' which mapes temperature in Celsius (C) into temperature in Fahrenheit (F) is defind by $\quad t(c)=F$ where $F=\frac{9}{5} C+32$. Find,
(i) $t(0)$
(ii) $t(28)$
(iii) $t(-10)$
(iv) The value of C when $t(C)=212$
(v) the temperature when the Celsius value is equal to the Farenheit value.

Answer:
(i) Given: $t(C)=F$

$$
\begin{array}{ccc}
& F=t(C) \quad t(c)=\frac{9}{5} C+32 \\
t(0)=\frac{9}{5}(0)+32=0+32 & =32^{\circ} F \\
& \text { (ii) } \quad t(28)=\frac{9}{5}(28)+32=\frac{252}{5}+32 & =50.4+32=82.4^{\circ} F \\
\text { (iii) } t(-10)=\frac{9}{5}(-10)+32=\frac{-90}{5}+32 & =-18+32=14^{\circ} F
\end{array}
$$

(iv) $t(C)=212$

$$
\begin{array}{ll}
\frac{9}{5} C+32=212 & \Rightarrow \frac{9}{5} C=212-32 \quad \Rightarrow \frac{9}{5} C=180 \\
C=180 \times \frac{5}{9} & \Rightarrow 20 \times 5 \quad=100 \\
C=100^{\circ} C &
\end{array}
$$

(v) $t(-40)=\frac{9}{5}(-40)+32$

$$
\Rightarrow 9(-8)+32 \quad \Rightarrow-72+32
$$

$$
t(-40)=-40^{\circ}
$$

31. Find $(f \circ g)$ and $(g \circ f)$ when $f(x)=2 x+1$ and $g(x)=x^{2}-2$

Answer:
Given: $f(x)=2 x+1, \quad g(x)=x^{2}-2$
(i) $f \circ g=f(g(x))=f\left(x^{2}-1\right)=2\left(x^{2}-2\right)+1=2 x^{2}-4+1$

$$
f \circ g=2 x^{2}-3
$$

(ii) $\quad g \circ f=g(f(x))=g(2 x+1)=(2 x+1)^{2}-2=(2 x)^{2}+2(2 x)(1)+1^{2}-2$

$$
\begin{aligned}
& =4 x^{2}+4 x+1-2=4 x^{2}+4 x-1 \\
g \circ f & =4 x^{2}+4 x-1
\end{aligned}
$$

32. Represent the function $f(x)=\sqrt{2 x^{2}-5 x+3}$ as a composition of two functions.

Answer:
Let $f_{2}(x)=2 x^{2}-5 x+3$ and $f_{1}(x)=\sqrt{x}$
$\begin{aligned} f(x)=\sqrt{2 x^{2}-5 x+3} & =\sqrt{f_{2}(x)} \\ & =f_{1}\left(f_{2}(x)\right) \\ & =f_{1} f_{2}(x)\end{aligned}$
33. If $f(x)=3 x-2, g(x) 2 x+k$ and if $(f o g)=(g \circ f)$, then find the value of ' k '.

Answer:
Given : $f(x)=3 x-2, g(x)=2 x+k$ and (fog) $=(g \circ f)$
$f \circ g=f(g(x))=f(2 x+k)=3(2 x+k)-2=6 x+3 k-2$
$f o g=6 x+3 k-2$
$g \circ f=g(f(x))=g(3 x-2)=2(3 x-2)+k=6 x-4+k$
$g \circ f=6 x-4+k$
$f \circ g=g \circ f \quad \Rightarrow 6 x+3 k-2=6 x-4+k$

$$
\Rightarrow 3 k-2=-4+k
$$

$$
\Rightarrow 3 k-k \quad=-4+2
$$

$\Rightarrow 2 k=-2$
Therefore $k=-1$
34. Find ' k ' if $f \circ f(k)=5$ where $f(k)=2 k-1$.

Answer:
Given : $f \circ f(k)=5$ and $f(k)=2 k-1$.
$\begin{aligned} f \circ f(k)=f(f(k)) \quad & =2(2 k-1)-1 \\ & =4 k-2-1 \\ & =4 k-3\end{aligned}$
Thus $f \circ f(k)=4 k-3$
But, it is given that $f o f(k)=5$
Therefore

$$
\begin{aligned}
4 k-3=5 & \Rightarrow 4 k=5+3 \\
4 k \quad=8 & \Rightarrow k=\frac{8}{4} \quad \Rightarrow K=2
\end{aligned}
$$

35. Find ' x ' if $g f f(x)=f g g(x)$, given $f(x)=3 x+1$ and $g(x)=x+3$

Answer:
Given : $g f f(x)=f g g(x), f(x)=3 x+1$ and $g(x)=x+3$
$g f f(x)=g[f f f(x)\}] \quad \Rightarrow g[f(3 x+1)] \Rightarrow g[3(3 x+1)+1] \quad \Rightarrow g(9 x+4)$

$$
\begin{array}{lll}
& \Rightarrow(9 x+4)+3 & \Rightarrow 9 x+7 \\
& \Rightarrow g(x)=f[g\{g(x)\}] & \Rightarrow f[g(x+3)] \Rightarrow f[(x+3)+3]
\end{array} \quad \Rightarrow f(x+6)
$$

These two quantities being equal, we get
$9 x+7=3 x+19$
$\Rightarrow 9 x-3 x=19-7 \Rightarrow 6 x-12$

That is $\quad x=2$
36. Find $(f \circ g)$ and $(g \circ f)$ when $f(x)=x-6$ and $g(x)=x^{2}$

Answer:
Given : $f(x)=x-6$ and $g(x)=x^{2}$
$f \circ g=f(g(x)) \quad \Rightarrow f\left(x^{2}\right) \quad \Rightarrow x^{2}-6$
$f \circ g=x^{2}-6$
$g \circ f=g(f(x)) \quad \Rightarrow g(x-6) \quad \Rightarrow(x-6)^{2}$
gof $=x^{2}-12 x+36 \quad$ Therefore fog \neq gof
37. Find $(f \circ g)$ and $(g \circ f)$ when $f(x)=3+x$ and $g(x)=x-4$

Answer:
Given: $f(x)=3+x$ and $g(x)=x-4$
$f \circ g=f(g(x)) \quad \Rightarrow f(x-4) \quad \Rightarrow 3+x-4$
$f o g=x-1$
$g \circ f=g(f(x)) \quad \Rightarrow g(3+x) \quad \Rightarrow(3+x)-4$
$g \circ f=x-1 \quad$ Therefore $f \circ g=g \circ f$
38. Find $(f \circ g)$ and $(g \circ f)$ when $f(x)=\frac{2}{x}$ and $g(x)=2 x^{2}-1$

Answer:
Given : $f(x)=\frac{2}{x}$ and $g(x)=2 x^{2}-1$
$f \circ g=f(g(x)) \quad \Rightarrow f\left(2 x^{2}-1\right) \quad \Rightarrow \frac{2}{2 x^{2}-1}$
$f \circ g=\frac{2}{2 x^{2}-1}$
$g \circ f=g(f(x)) \quad \Rightarrow g\left(\frac{2}{x}\right) \quad \Rightarrow 2\left(\frac{2}{x}\right)^{2}-1 \Rightarrow 2\left(\frac{4}{x^{2}}\right)-1 \quad \Rightarrow\left(\frac{8}{x^{2}}\right)-1$
gof $=\frac{8}{x^{2}}-1 \quad$ Therefore $f \circ g \neq g \circ f$
39. Find $(f \circ g)$ and $(g \circ f)$ when $f(x)=\frac{x+6}{3}$ and $g(x)=3-x$

Answer:
Given: $f(x)=\frac{x+6}{3}$ and $g(x)=3-x$
$f \circ g=f(g(x)) \quad \Rightarrow f(3-x)$
$\Rightarrow \frac{3-x+6}{3} \quad \Rightarrow \frac{9-x}{3}$
$f \circ g=\frac{9-x}{3}$
$g \circ f=g(f(x)) \quad \Rightarrow g\left(\frac{x+6}{3}\right) \quad \Rightarrow 3-\left(\frac{x+6}{3}\right) \Rightarrow \frac{9-x-6}{3}$
gof $=\frac{3-x}{3} \quad$ Therefore fog $\neq g \circ f$
40. Find the value of k, such that $f \circ g=g \circ f f(x)=3 x+2$ and $g(x)=6 x-k$

Answer:
Given : $f(x)=3 x+2$ and $g(x)=6 x-k$

$$
\begin{array}{lll}
f \circ g=f(g(x)) & \Rightarrow f(6 x-k) & \Rightarrow 3(6 x-k)+2
\end{array} \quad \Rightarrow 18 x-3 k+2
$$

41. Find the value of k, such that $f \circ g=g \circ f, f(x)=2 x-k$ and $g(x)=4 x+5$

Answer:
Given: $f(x)=2 x-k$ and $g(x)=4 x+5$

$$
\begin{aligned}
& \begin{array}{lll}
f \circ g=f(g(x)) & \Rightarrow f(4 x+5) & \Rightarrow 2(4 x+5)-k \\
f \circ g=8 x+10-k & \\
g \circ f=g(f(x)) & \Rightarrow g(2 x-k) & \Rightarrow 4(2 x-k)+5 \\
g \circ f=8 x-4 k+5 & \\
& \begin{array}{rll}
f \circ g=g \circ f & \Rightarrow 8 x+10-k & =8 x-4 k+5
\end{array} \\
& \Rightarrow 10-k & =-4 k+5 \\
& \Rightarrow-k+4 k & =5-10 \\
& \Rightarrow 3 k & =-5 \\
& \Rightarrow k=\frac{-5}{3}
\end{array}
\end{aligned}
$$

42. If $f(x) 2 x-1$ and $g(x)=\frac{x+1}{2}$ show that $f \circ g=g \circ f=x$

Answer:
Given : $f(x)=2 x-1$ and $g(x)=\frac{x+1}{2}$
$f \circ g=f(g(x)) \Rightarrow f\left(\frac{x+1}{2}\right) \Rightarrow 2\left(\frac{x+1}{2}\right)-1$
$f \circ g=x+1-1=x$
$f o g=x$
$g \circ f=g(f(x)) \quad \Rightarrow g(2 x-1) \quad \Rightarrow \frac{2 x-1+1}{2}$
$g \circ f=\frac{2 X}{2}$ Therefore fog $=g \circ f$
$g \circ f=x$
From (1) and (2) \quad LHS = RHS
Therefore fog = gof
43. If $f(x)=x^{2}-1, g(x)=x-2$ find ' a ', if $g \circ f(a)=1$.

Answer:

Given : $f(a)=a^{2}-1$ and $g(a)=a-2$
$g \circ f=g(f(x)) \quad \Rightarrow g\left(a^{2}-1\right) \quad \Rightarrow\left(a^{2}-1\right)-2$

$$
\Rightarrow a^{2}-1-2 \quad \Rightarrow a^{2}-3
$$

$G \circ f(a)=1 \quad \Rightarrow a^{2}-3=1 \Rightarrow a^{2}=1+3$

$$
\begin{aligned}
& \Rightarrow a^{2}+4 \quad \Rightarrow a=\sqrt{4} \\
& \Rightarrow a= \pm 2
\end{aligned}
$$

44. Find ' k ', if $f(k)=2 k-1$ and $f \circ f(k)=5$

Answer:
Given : $f(k)=2 k-1$
$f \circ f=f(f(k)) \quad \Rightarrow f(2 k-1) \quad \Rightarrow 2(2 k-1)-1$
$f \circ f=4 k-2-1$
$f \circ f=4 k-3$

$$
\begin{array}{lll}
f \circ f(k)=5 & \Rightarrow 4 k-3=5 & \Rightarrow 4 k=5+3 \\
& \Rightarrow 4 k=8 & \Rightarrow k=\frac{8}{4} \\
& \Rightarrow k=2 &
\end{array}
$$

45. Let $A, B, C \subseteq N$ and a function $f: A \rightarrow B$ be defined by $f(x) 2 x+1$ and $g: B \rightarrow C$ be defined by $g(x)=x^{2}$. Find the range of fog and gof
Answer:
Given : $f(x)=2 x+1$ and $g(x) x^{2}$
$f \circ g=f \circ g(x) \quad \Rightarrow f\left(x^{2}\right) \quad \Rightarrow 2\left(x^{2}\right)+2$
$f o g=2 x^{2}+1$
$g \circ f=g(f(x)) \Rightarrow g(2 x+1) \quad \Rightarrow(2 x+1)^{2}$

$$
\Rightarrow 4 x^{2}+4 x+1
$$

$g \circ f=4 x^{2}+4 x+1$
Range offog $=\left\{y \mid y=2 x^{2}+1, x \in N\right\}$
Range of $g \circ f=\left\{y \mid y=4 x^{2}+4 x+1, x \in N\right\}$
46. Let $f(x)=x^{2}-1$. Find fof and fofof

Answer:
Given : $f(x)=x^{2}-1$
(i) $f \circ f=f(f(x))$

$$
\left.\begin{array}{llll}
\text { (i) } f \circ f=f(f(x)) & \Rightarrow f\left(x^{2}-1\right) & \Rightarrow\left(x^{2}-1\right)^{2}-1 & \Rightarrow x^{4}-2 x^{2}+1-1 \\
\text { (ii) } f \circ f \circ f=f \circ f(f(x)) & \Rightarrow x^{4}-2 x^{2} & \Rightarrow f\left(x^{4}-2 x^{2}\right) & \Rightarrow\left(x^{4}-2 x^{2}\right)^{2}-1
\end{array} \quad \Rightarrow x^{8}-4 x^{2}+4 x^{4}-1\right)
$$

47. If $f: R \rightarrow R$ and $g: R \rightarrow R$ are defined by $f(x)=x^{5}$ and $g(x)=x^{4}$ then check if f, g are one one and fog is one - one?
Answer:
Given : $\quad f(x)=x^{5}$ and $g(x)=x^{4}$
$f o g=f(g(x)) \quad \Rightarrow f\left(x^{4}\right) \quad \Rightarrow\left(x^{4}\right)^{5} \quad \Rightarrow x^{20}$
Therefore f is one - one also gof is one - one.
48. If $f(x)=x-1, g(x)=3 x+1$ and $h(x)=x^{2}$ then prove that fo(goh) =(fog)oh

Answer:
Given : $f(x)=x-1, g(x)=3 x+1$ and $h(x)=x^{2}$
LHS: fo(goh)

$$
\begin{array}{lll}
\text { goh }=g(h(x)) & \Rightarrow g\left(x^{2}\right) & \Rightarrow 3 x^{2}+1 \\
\text { goh }=3 x^{2}+1 & & \\
f o(g o h)=f\left(3 x^{2}+1\right) & \Rightarrow 3 x^{2}+1-1 & \Rightarrow 3 x^{2}
\end{array}
$$

$f o(g o h)=3 x^{2}$

RHS: (fog)oh

$f \circ g=f(g(x))$	$\Rightarrow f(3 x+1)$	$\Rightarrow 3 x+1-1 \Rightarrow 3 x$
fog $=3 x$		
(fog) $)=(f \circ g)(h(x)$	$\Rightarrow(f \circ g)\left(x^{2}\right)$	$\Rightarrow 3 x^{2}$
(fog)oh $=3 x^{2}----------(2)$		
From (1) and (2)		
LHS $=$ RHS	That is	
fo(goh) $=($ fog $)$ oh		

49. If $f(x)=x^{2}, g(x)=2 x$ and $h(x)=x+4$ then prove that $f o(g o h)=(f o g) o h$

Answer:
Given : $f(x) x^{2}, g(x)=2 x$ and $h(x)=x+4$
goh $=g(h(x)) \quad \Rightarrow g(x+4) \quad \Rightarrow 2(x+4) \quad \Rightarrow 2 x+8$
goh $=2 x+8$
$f o(g o h)=f(2 x+8) \quad \Rightarrow(2 x+8)^{2} \quad \Rightarrow 4 x^{2}+32 x+64$
fo(goh) $=4 x^{2}+32 x+64$
RHS: (fog)oh

$f \circ g=f(g(x))$	$\Rightarrow f(2 x)$	$\Rightarrow(2 x)^{2}$	$\Rightarrow 4 x^{2}$
$f \circ g=4 x^{2}$		$\Rightarrow(f o g)(x+4)$	$\Rightarrow 4(x+4)^{2}$

(fog)oh $=4 x^{2}+32 x+64$
From (1) and (2)
LHS $=$ RHS
That is
fo(goh) $=(f o g) o h$
50. If $f(x)=x-4, g(x)=x^{2}$ and $h(x)=3 x-5$ then prove that $f o(g o h)=(f o g) o h$

Answer:
Given : $f(x) x-4, g(x)=x^{2}$ and $h(x)=3 x-5$
goh $=g(h(x)) \quad \Rightarrow g(3 x-5) \quad \Rightarrow(3 x-5)^{2} \quad \Rightarrow 9 x^{2}-30 x+25$
gog $=9 x^{2}-30 x+25$
$f o(g o h)=f\left(9 x^{2}-30 x+25\right) \quad \Rightarrow\left(9 x^{2}-30 x+25\right)-4 \quad \Rightarrow 9 x^{2}-30 x+25-4$
fo(goh) $=9 x^{2}-30 x+21$
RHS: (fog)oh
$\begin{array}{ll}f o g=f(g(x)) & \Rightarrow f\left(x^{2}\right) \quad \Rightarrow x^{2}-4 \\ f o g \quad=x^{2}-4 & \Rightarrow(f o g)(3 x-5) \quad \Rightarrow(3 x-5)^{2}-5 \quad \Rightarrow 9 x^{2}-30 x+25-4\end{array}$
(fog)oh = $9 x^{2}-30 x+21$
From (1) and (2)
LHS = RHS That is
fo(goh) $=(f o g)$ oh
51. If $f(x)=2 x+3, g(x)=1-2 x$ and $h(x)=3 x$. Prove that $f o(g o h)=(f o g) o h$

Answer:
Given : $f(x)=2 x+3, g(x)=1-2 x$ and $h(x)=3 x$
LHS: fo(goh)

$g o h=g(h(x))$	$\Rightarrow g(3 x) \quad \Rightarrow 1-2(3 x) \quad \Rightarrow 1-6 x$
goh $=1-6 x$	
$f o(g o h)=f(1-6 x)$	$\Rightarrow 2(1-6 x)+3 \quad \Rightarrow 2-12 x+3$

$f o(g o h)=5-12 x---------------(1)$
RHS: (fog)oh
$f \circ g=f(g(x)) \quad \Rightarrow f(1-2 x) \quad \Rightarrow 2(1-2 x)+3 \quad \Rightarrow 2-4 x+3$
$f o g=5-4 x$
$(f \circ g) \circ h=(f \circ g)(h(x) \quad \Rightarrow(f \circ g)(3 x) \quad \Rightarrow 5-4(3 x)$
(fog)oh = 5-12x
From (1) and (2)
$L H S=R H S$
That is
fo(goh) $=(f o g)$ oh
52. Let $f=\{(-1,3),(0,-1),(2,-9)\}$ be a linear function from Z into Z. Find $f(x)$.

Answer:
Given : $f=\{(-1,3),(0,-1),(2,-9)\}$
$f(x)=a x+b$ is onto function.
$f(-1)=-3 \quad \Rightarrow a(-1)+b=3 \quad \Rightarrow-a+b=3$
$f(0)=-1 \quad \Rightarrow a(0)+b=-1 \quad \Rightarrow 0+b=-1 \quad \Rightarrow b=-1$
Substitute ' b ' value in (1)
$-a+b=0 \quad \Rightarrow-a+(-1)=3 \quad \Rightarrow-a-1=3 \quad \Rightarrow-a=3+1 \quad \Rightarrow-a=4$
$a=-4$
Therefore the linear function $f(x)$ is $-4 x-1$
53. In electrical circuit theory, a circuit $C(t)$ is called linear circuit if it satisfies the superposition principle given by $\quad C\left(a t_{1}+b t_{2}\right)=a C\left(t_{1}\right)+b C\left(t_{2}\right)$, where a, b are constants. Show that the circuit $C(t)=3 t$ is linear.
Answer :
Given: $C(t)=3 t$
To prove: $C(t)$ is linear
$C\left(a t_{1}\right)=3 a t_{1}$
$c\left(b t_{2}\right)=3 b t_{2}$
(1) + (2)
$C\left(a t_{1}\right)+c\left(b t_{2}\right)=3 a t_{1}+3 b t_{2} \quad \Rightarrow C\left(a t_{1}+b t_{2}\right)=3\left(a t_{1}+b t_{2}\right)$
Superposition principle is satisified.
Hence $C(t)=3 t$ is linear function.

THEOREMS

THEOREM - 1
BASIC PROPORTIONALITY THEOREM (OR) THALES THEOREM.
State and prove Basic proportionality theorme (or) Thales theorem.

Statement : If a straight line is drawn parallel to one side of a triangle intersecting the other two sides, then divides the sides in the same ratio.

DIAGRAM:-

Step. No.	Statement	Reason
1.	$\angle A B C=\angle A D E=\angle 1----------(1)$	Corresponding angles
2.	$\angle A C B=\angle A E D=\angle 2---------(2)$	Corresponding angles
3.	$\angle B A C=\angle D A E=\angle 3----------(3)$	Common angles to $\triangle A B C$ and $\triangle A D E$
4.	$\triangle A B C \sim \triangle A D E$	AA Similarity, from (1), (2) and (3)
5.	$\frac{A B}{A D}=\frac{A C}{A E}$	corresponding sides are proportional.
6.	$\frac{A D+D B}{A D}=\frac{A E+E C}{A E}$	Split $A B$ and $A C$
7.	$1+\frac{D B}{A D}=1+\frac{E C}{A E}$	
8.	$\begin{gathered} \frac{D B}{A D}=\frac{E C}{A E} \\ \frac{A D}{D B}=\frac{A E}{E C}(\text { Hence proved }) \end{gathered}$	By cancelling 1 both sides. Taking their reciprocals

CONVERSE OF THALES THEOREM (or) BASIC PROPORTIONALITY THEOREM.
If a straight line divides any two sides of a triangle in the same ratio, then the line must be parallel to the third side.

THEOREM - 2
ANGLE BISECTOR THEOREM.
State and prove Angle Bisector Theorem.

Statement : The internal bisector of an angle of triangle divides the opposite side internally in the ratio of the corresponding sides containing the angle.

Given: In a $\triangle A B C, A D$ is the internal bisector of $\angle B A C$ which meets $B C$ at D
To Prove : $\frac{B D}{D C}=\frac{A B}{A C}$
Construction : Draw CE || DA to meet $B A$ produced at E.
Let $\angle B A D=\angle 1, \quad \angle D A C=\angle 2, \quad \angle A E C=\angle 3, \angle A C E=\angle 4$

Proof:

Step. No.	Statement	Reason	
1.	$\angle 1$ = $\angle 2$------------------(1)	$A D$ is the angle bisector of $\angle A$	
2.	$\angle 1=\angle 3$-------------------(2)	Corresponding angles. Since CE \|	DA
3.	$\angle 2=\angle 4$------------------(3)		
4.	$\angle 3=\angle 4$	Alternate angles, because AC is transversal From (1), (2) and (3)	
5.	$A E=A C$-------------------(4) $B D \quad A B$	Sides opposite to equal angles are equal By thales theorem.	
6.	$: \overline{D C}=\frac{A B}{A E}$		
7.	$: \frac{B D}{D C}=\frac{A B}{A C}$ (Hence proved)	From (4)	

CONVERSE OF ANGLE BISECTOR THEOREM.

If a straight line through one vertex of a triangle divides the opposite side internally in the ratio of the other two sides, then the line bisects the angle internally at the vertex.

PYTHAGORAS THEOREM

State and prove Pythagoras Theorem.
Statement : In a rightagnle triange square hypotenuse is equal to the sum of square of other two sides.
2. DIAGIRAM:

Proof:

Step. No.	Statement	Reason
1.	$\triangle A B C \sim \triangle D B A$	AA similarity, because, $\angle B$ is common, $\angle B A C=\angle B D A=90^{\circ}$
2	$\frac{A B}{B D}=\frac{B C}{A B}$	Corresponding sides are proportional.
	$A B^{2}=B C \times B D$----------(1)	
3.	$\triangle A B C \sim \triangle D A C$	AA similarity, because, $\angle C$ is common, $\angle B A C=\angle A D C=90^{\circ}$
4.	$\frac{B C}{A C}=\frac{A C}{D C}$	Corresponding sides are proportional.
	$\begin{equation*} A C^{2}=B C \times D C \tag{2} \end{equation*}$	
5.	$\begin{aligned} A B^{2}+A C^{2} & =(B C \times B D)+(B C \times D C) \\ & =B C \times(B D+D C) \\ & =B C \times B C \\ A B^{2}+A C^{2} & =B C^{2} \text { (hence proved) } \end{aligned}$	By adding (1) and (2)

CONVERSE OF PYTHAGORAS THEOREM.

If the square of the longest side of a triangle is equal to sums of squares of other two sides, then the triangle is right angle triangle.

THEOREM - 4

ALTERNATE SEGMENT THEOREM (OR) TANGENT - CHORD THEOREM.
State and prove Alternate segment theorem (or) Tangent - chord theorem..

Statement : If from the point of contact of a tangent of a circle, a chord is drawn then the angles between the tangent and the chord are respectively to the angles in the corresponding alternate segments.

Given: A circle with centre at O, tangent $A B$ touches the circle at P and $P Q$ is a chord. S and T are two points on the circle in the opposite sides of chord PQ.
To Prove : $\angle Q P B=\angle P S Q, \angle Q P A=\angle P T Q$
Construction : Draw the diameter POR.
Draw QR, QS, QT, PS and PT

Proof:

Step. No.	Statement	Reason
1.	$\angle Q P B=\theta$ (say) $\therefore \angle Q P R=90-\theta$-----(1)	Diameter RP is perpendicular to tangent $A B$
2.	$\angle \mathrm{PQR}=90^{\circ}$	Angle in semicircle is 90°
3.	$\angle Q R P=\theta-----------------(2)$	In $\triangle P Q R$, the sum of all angles are 180° so $(90-\theta)+90+\angle Q R P=180^{\circ}$
4.	$\angle Q R P=\angle Q S P=\theta-----------(3)$	Angles in the same segment are equal
5.	$\angle Q P B=\angle Q S P=\theta$ (hence (i) proved)	From (1), (2) and (3)
6.	$\angle Q P B=\theta \Rightarrow \angle Q P A=180-\theta-----$ (4)	Linear pair of angles
7.	$\angle Q S P=\theta \Rightarrow \angle P T Q=180-\theta------(5)$	Sum of opposite angles of a cyclic quadrilateral PTQS is 180°
8.	$\angle Q P A=\angle P T Q$	From (4) and (5)

COORDINATE GEOMETRY

1. Find the area of the triangle whose vertices are (-3,5), (5, 6) and (5,-2) Answer:
Area of the triangle $=\frac{1}{2}\left\{\begin{array}{llll}x_{1} & x_{2} & x_{3} & x_{1} \\ y_{1} & y_{2} & y_{3} & y_{1}\end{array}\right\}$ sq. units.
$x_{1}=-3, x_{2}=5, x_{3}=5, y_{1}=5, y_{2}=6$ and $y_{3}=-2$
Area of the triangle $=\frac{1}{2}\left(\begin{array}{rrrr}-3 & 5 & 5 & -3 \\ 5 & 6 & -2 & 5\end{array}\right) \quad=\frac{1}{2}[(-18-10+25)-(25+30+6)$

$$
=\frac{1}{2}[(-3)-(61)] \quad=\frac{1}{2}(-3-61)=\frac{1}{2}(-64)=-32
$$

Area of the triangle $=32$ Sq. Units.
2. Find the area of the triangle whose vertices are ($1,-1$), (-4, 6) and ($-3 .-5$) Answer:
Area of the triangle $=\frac{1}{2}\left\{\begin{array}{llll}x_{1} & x_{2} & x_{3} & x_{1} \\ y_{1} & y_{2} & y_{3} & y_{1}\end{array}\right\}$ sq. units.
$x_{1}=1, \quad x_{2}=-4, \quad x_{3}=-3, \quad y_{1}=-1, \quad y_{2}=6$ and $y_{3}=5$
Area of the triangle $=\frac{1}{2}\left(\begin{array}{rrrr}1 & -4 & -3 & 1 \\ -1 & 6 & -5 & -1\end{array}\right)=\frac{1}{2}[(6+20+3)-(4-18-5)]$

$$
=\frac{1}{2}[(29)-(-19)] \quad=\frac{1}{2}(29+19)=\frac{1}{2}(48)=24
$$

Area of the triangle $=24$ Sq. Units.
3. Find the area of the triangle whose vertices are ($-10,-4$), (-8, -1) and ($-3,-5$)

Answer:
Area of the triangle $=\frac{1}{2}\left\{\begin{array}{llll}x_{1} & x_{2} & x_{3} & x_{1} \\ y_{1} & y_{2} & y_{3} & y_{1}\end{array}\right\}$ sq. units.
$x_{1}=-10, \quad x_{2}=-8, \quad x_{3}=-1, \quad y_{1}=-4, \quad y_{2}=-1 \quad$ and $y_{3}=-5$
Area of the triangle $=\frac{1}{2}\left(\begin{array}{cccc}-10 & -8 & -3 & -10 \\ -4 & -1 & -5 & -4\end{array}\right) \quad=\frac{1}{2}[(10+40+12)-(32+3+50)]$

$$
=\frac{1}{2}[(62)-(85)] \quad=\frac{1}{2}(62-85) \quad=\frac{1}{2}(-23)=-11.5
$$

Area of the triangle $=11.5$ Sq. Units.
4. Show that the points $P(-1.5,3), Q(6,-2), R(-3,4)$ are collinear.

Answer:
Area of the triangle $=\frac{1}{2}\left\{\begin{array}{llll}x_{1} & x_{2} & x_{3} & x_{1} \\ y_{1} & y_{2} & y_{3} & y_{1}\end{array}\right\}$ sq. units.
$x_{1}=-1.5, \quad x_{2}=6, \quad x_{3}=-3, \quad y_{1}=3, \quad y=-2$ and $y_{3}=-3$
Area of triangle $P Q R=\frac{1}{2}\left\{\begin{array}{cccc}-1.5 & 6 & -3 & -1.5 \\ 3 & -2 & 4 & 3\end{array}\right\}=\frac{1}{2}[(3+24-9)-(18+6-6)]$

$$
=\frac{1}{2}[(18)-(18)] \quad=\frac{1}{2}(18-18) \quad=\frac{1}{2}(0)=0
$$

Therefore the given points are collinear.
5. Determine whether the points are collinear. $(a, b+c),(b, c+a),(c, a+b)$

Area of the triangle $=\frac{1}{2}\left\{\begin{array}{llll}x_{1} & x_{2} & x_{3} & x_{1} \\ y_{1} & y_{2} & y_{3} & y_{1}\end{array}\right\}$ sq. units.
$x_{1}=a, x_{2}=b, x_{3}=c, y_{1}=b+c, y_{2}=c+a \quad$ and $y_{3}=a+b$
Area of triangle $P Q R=\frac{1}{2}\left\{\begin{array}{cccc}a & b & c & a \\ b+c & c+a & a+b & b+c\end{array}\right\}$

$$
\begin{aligned}
& =\frac{1}{2}[(a(c+a)+b(a+b)+c(b+c))-(b(b+c)+c(c+a)+a(a+b)] \\
& =\frac{1}{2}\left[\left(a c+a^{2}+a b+b^{2}+b c+c^{2}\right)-\left(b^{2}+b c+c^{2}+a c+a^{2}+a b\right)\right] \\
& =\frac{1}{2}\left(a c+a^{2}+a b+b^{2}+b c+c^{2}-b^{2}-b c-c^{2}-a c-a^{2}-a b\right)=\frac{1}{2}(0)=0
\end{aligned}
$$

Therefore the given points are collinear.
6. Determine whether the points are collinear $\left(-\frac{1}{2}, 3\right),(-5,6)$ and (-8, 8$)$

Area of the triangle $=\frac{1}{2}\left\{\begin{array}{llll}x_{1} & x_{2} & x_{3} & x_{1} \\ y_{1} & y_{2} & y_{3} & y_{1}\end{array}\right\}$ Sq. units.
$x_{1}=-\frac{1}{2}, \quad x_{2}=-5, \quad x_{3}=-8, \quad y_{1}=3, \quad y_{2}=6 \quad$ and $y_{3}=8$
Area of triangle $P Q R=\frac{1}{2}\left\{\begin{array}{cccc}\frac{-1}{2} & -5 & -8 & \frac{-1}{2} \\ 3 & 6 & 8 & 3\end{array}\right\} \quad=\frac{1}{2}[(-3-40-24)-(-15-48-4)]$

$$
=\frac{1}{2}[(-67)-(-67)] \quad=\frac{1}{2}(-67+67) \quad=\frac{1}{2}(0) \quad=0
$$

Therefore the given points are collinear.
7. If the area of the triangle formed by the verticies $A(-1,2), B(k,-2)$ and $C(7,4)($ taken in order) is $\mathbf{2 2}$ sq. units, find the value of ' k '.
Answer:
$x_{1}=-1, \quad x_{2}=k, \quad x_{3}=7, \quad y_{1}=2, \quad y_{2}=-2$ and $y_{3}=4$
Area of the triangle $\Rightarrow \frac{1}{2}\left\{\begin{array}{llll}x_{1} & x_{2} & x_{3} & x_{1} \\ y_{1} & y_{2} & y_{3} & y_{1}\end{array}\right\}=22$ Sq. Units

$$
\begin{aligned}
& \Rightarrow \frac{1}{2}\left(\begin{array}{cccc}
-1 & k & 7 & -1 \\
2 & -2 & 4 & 2
\end{array}\right)=22 \\
& \Rightarrow \frac{1}{2}[(2+4 k+14)-(2 k-14-4)]=22 \\
& \Rightarrow \frac{1}{2}[(16+4 k)-(-18+2 k)]=22 \quad \Rightarrow \frac{1}{2}[16+4 k+18-2 k]=22 \\
& \Rightarrow 34+2 k=44 \quad \Rightarrow 2 k=10 \\
& \Rightarrow k=\frac{10}{2} \quad \Rightarrow 2 k=44-34 \quad \Rightarrow k=5
\end{aligned}
$$

8. If the area of the triangle formed by the verticies $A(0,0), B(p, 8)$ and $C(6,2)$ (taken in order) is 20 sq. units, find the value of ' p '.
Answer:
$x_{1}=0, \quad x_{2}=p, \quad x_{3}=6, y_{1}=0, y_{2}=8$ and $y_{3}=2$
Area of the triangle $\Rightarrow \frac{1}{2}\left\{\begin{array}{llll}x_{1} & x_{2} & x_{3} & x_{1} \\ y_{1} & y_{2} & y_{3} & y_{1}\end{array}\right\} \quad=20$ Sq. Units
$\Rightarrow \frac{1}{2}\left(\begin{array}{llll}0 & p & 6 & 0 \\ 0 & 8 & 2 & 0\end{array}\right) \quad=20$
$\Rightarrow \frac{1}{2}[(0+2 p+0)-(0+48+0)]=20$
$\Rightarrow \frac{1}{2}[(2 p)-(48)]=20 \quad \Rightarrow \frac{1}{2}[2 p-48]=20$
$\Rightarrow 2 p-48=40 \quad \Rightarrow 2 P=40+48 \quad \Rightarrow 2 P=88$
$\Rightarrow P=\frac{88}{2} \quad \Rightarrow P=44$
9. If the area of the triangle formed by the verticies $A(p, p), B(5,6)$ and $C(5,-2)$ (taken in order) is 32 sq. units, find the value of ' p '.
Answer:
$x_{1}=p, x_{2}=5, x_{3}=5, y_{1} \equiv y_{1}, y_{2}=6$ and $y_{3}=2$

Area of the triangle

$$
\begin{aligned}
& \Rightarrow \frac{1}{2}\left\{\begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{1} \\
y_{1} & y_{2} & y_{3} & y_{1}
\end{array}\right\} \quad=32 \text { Sq. Units } \\
& \Rightarrow \frac{1}{2}\left(\begin{array}{cccc}
p & 5 & 5 & p \\
p & 6 & -2 & p
\end{array}\right) \quad=32 \\
& \Rightarrow \frac{1}{2}[(6 p-10+5 p)-(5 p+30-2 p)]=32 \\
& \Rightarrow \frac{1}{2}\left[(11 p-10)-(3 p+30]=32 \quad \Rightarrow \frac{1}{2}[11 p-10-3 p-30=32\right. \\
& \Rightarrow 8 p-40=64 \quad \Rightarrow 8 p=64-40 \quad \Rightarrow 8 p=104 \\
& \Rightarrow p=\frac{104}{2}
\end{aligned}
$$

10. In each of the following, find the value of ' a ' for which the given points are collinear
(i) (2,3), (4, a) and (6, -3)
(ii) ($a, 2-2 a),(-a+1,2 a)$ and ($-4-a, 6-2 a$)
(i) (2, 3), (4, a) and (6, -3)

Answer:
$x_{1}=2, \quad x_{2}=4, \quad x_{3}=6, \quad y_{1}=3, y_{2}=a$ and $y_{3}=-3$
Area of the triangle $\Rightarrow \frac{1}{2}\left\{\begin{array}{llll}x_{1} & x_{2} & x_{3} & x_{1} \\ y_{1} & y_{2} & y_{3} & y_{1}\end{array}\right\} \quad=0$ Sq. Units

$$
\begin{aligned}
& \Rightarrow \frac{1}{2}\left(\begin{array}{cccc}
2 & 4 & 6 & 2 \\
3 & a & -3 & 3
\end{array}\right) \quad=0 \\
& \Rightarrow \frac{1}{2}[(2 a-12+18)-(12+6 a-6)]=0 \\
& \Rightarrow \frac{1}{2}\left[(2 a+6)-(6+6 a]=0 \Rightarrow \frac{1}{2}[2 a+6-6-6 a]=0\right. \\
& \Rightarrow-4 a=0 \\
& \Rightarrow a=\frac{0}{-4} \quad \Rightarrow a=0
\end{aligned}
$$

(ii) $(a, 2-2 a),(-a+1,2 a)$ and $(-4-a, 6-2 a)$

Answer:

$x_{1}=a, \quad x_{2}=-a+1, \quad x_{3}=-4-a, \quad y_{1}=2-2 a, \quad y_{2}=2 a$ and $y_{3}=6-2 a$
Area of the triangle $\Rightarrow \frac{1}{2}\left\{\begin{array}{llll}x_{1} & x_{2} & x_{3} & x_{1} \\ y_{1} & y_{2} & y_{3} & y_{1}\end{array}\right\} \quad=0$ Sq. Units
$\Rightarrow \frac{1}{2}\left(\begin{array}{cccc}a & -a+1 & -4-a & a \\ 2-2 a & 2 a & 6-2 a & 2-2 a\end{array}\right) \quad=0$
$\Rightarrow \frac{1}{2}\left[\left(2 a^{2}+(-a+1)(6-2 a)+(-4-a)(2-2 a)\right)-((2-2 a)(-a+1)+2 a(-4-a)+(6-2 a) a)\right]=0$
$\Rightarrow \frac{1}{2}\left[\left(2 a^{2}-6 a+2 a^{2}+6-2 a-8+8 a-2 a+2 a^{2}\right)-\left(-2 a+2+2 a^{2}-2 a-8 a-2 a^{2}+6 a-2 a^{2}\right)\right]=0$
$\Rightarrow \frac{1}{2}\left[2 a^{2}-6 a+2 a^{2}+6-2 a-8+8 a-2 a+2 a^{2}+2 a-2-2 a^{2}+2 a+8 a+2 a^{2}-6 a+2 a^{2}\right]=0$
$\Rightarrow \frac{1}{2}\left[8 a^{2}+4 a-4\right]=0$
$\Rightarrow 8 a^{2}+4 a-4=0 \quad \Rightarrow 2 a^{2}+a-1=0$
$\Rightarrow(2 a-1)(a+1)=0$
$\Rightarrow 2 a-1=0$
$\Rightarrow 2 a=1 \quad \Rightarrow a=\frac{1}{2}$
$\Rightarrow a+1=0 \quad \Rightarrow a=-1$
11. If the points $P(-1,-4), Q(b, c)$ and $R(5,-1)$ are collinear and if $2 b+c=4$ then find the values of ' b ' and ' c '.
Answer:
$x_{1}=-1, \quad x_{2}=b, \quad x_{3}=5, \quad y_{1}=-4, \quad y_{2}=c \quad$ and $\quad y_{3}=-1$

Area of the triangle

$$
\left.\begin{array}{l}
\Rightarrow \frac{1}{2}\left\{\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array} x_{1}\right. \\
y_{1}
\end{array} y_{2} y_{3} y_{1}\right\} \quad=0 \text { Sq. Units }
$$

we get $b=3$ and $c=-2$
12. The floor of a hall is covered with identical tiles which are in the shapes of triangles. One such triangle has verticies at $(-3,2),(-1,-1)$ and (1,2). If the floor of the hall is completely covered by 110 tiles, find the area of the floor.

Answer:

Vertices of one triangular tile are at $(-3,2)(-1,-1)$ and $(1,2)$
$x_{1}=-3, x_{2}=-1, x_{3}=1, y_{1}=2, y_{2}=-1$ and $y_{3}=2$
Area of one tile $\quad=\frac{1}{2}\left\{\begin{array}{llll}x_{1} & x_{2} & x_{3} & x_{1} \\ y_{1} & y_{2} & y_{3} & y_{1}\end{array}\right\}$ sq. units.
Area of one tile

$$
=\frac{1}{2}\left\{\begin{array}{rrrr}
-3 & -1 & 1 & -3 \\
2 & -1 & 2 & 2
\end{array}\right\}
$$

$$
=\frac{1}{2}[(3-2+2)-(-2-1-6)]
$$

$$
=\frac{1}{2}[(3)-(-9)]
$$

$$
=\frac{1}{2}(3+9) \quad=\frac{1}{2}(12)
$$

$$
=6
$$

Therefore area of one tile $=6$ sq. units.
Since the floor is covered by 110 triangle shaped identical tiles,
Area of floor $=110 \times 6=660$ sq. units.
13. Find the area of the quadrilateral formed by the points (8, 6), (5, 11), (-5, 12) and (-4, 3) Answer:
Area of the triangle $\Rightarrow \frac{1}{2}\left\{\begin{array}{lllll}x_{1} & x_{2} & x_{3} & x_{4} & x_{1} \\ y_{1} & y_{2} & y_{3} & y_{4} & y_{1}\end{array}\right\}$ sq. Units
$x_{1}=8, x_{2}=5, x_{3}=-5, x_{4}=-4, y_{1}=6, y_{2}=11, y_{3}=12$ and $y_{4}=3$ Area of quadrilateral $=\frac{1}{2}\left\{\begin{array}{ccccc}8 & 5 & -5 & -4 & 8 \\ 6 & 11 & 12 & 3 & 6\end{array}\right\}$

$$
\begin{aligned}
& =\frac{1}{2}[(88+60-15-24)-(30-55-48+24)] \\
& =\frac{1}{2}[(109)-(-49)] \quad=\frac{1}{2}(109+49)
\end{aligned}
$$

Therefore area of quadrilateral $=79$ sq. units.
14. The given diagram shows a plan for constructing a new Parking loot at a campus. It is estimated that such construction would cost ₹ 1300 per square feet. What will be the total cost for making the parking lot? Answer:
The parking lot is a quadrilateral whose vertices are at
$A(2,2), B(5,5), C(4,9)$ and $D(1,7)$
$x_{1}=2, x_{2}=5, x_{3}=4, x_{4}=1, y_{1}=2, y_{2}=5, y_{3}=9$ and $y_{4}=7$

Area of the triangle $\Rightarrow \frac{1}{2}\left\{\begin{array}{lllll}x_{1} & x_{2} & x_{3} & x_{4} & x_{1} \\ y_{1} & y_{2} & y_{3} & y_{4} & y_{1}\end{array}\right\}$ Sq. Units
Area of quadrilateral $=\frac{1}{2}\left\{\begin{array}{lllll}2 & 5 & 4 & 1 & 2 \\ 2 & 5 & 9 & 7 & 2\end{array}\right\}$

$$
\begin{aligned}
& =\frac{1}{2}[(10+45+28+2)-(10+20+9+14)] \\
& =\frac{1}{2}[(85)-(53)] \quad=\frac{1}{2}(85-53) \quad=\frac{1}{2}(32) \quad=16
\end{aligned}
$$

Therefore area of parking lot $=16$ sq. feets.
Construction rate per square feet ₹ 1300 .
Therefore total cost for constructing the parking lot $=16 \times 1300=₹ 20800$
15. Find the area of the quadrilateral whose verticies are at
(i) (-9, -2), $(-8,-4),(2,2)$ and $(1,-3)$
(ii) $(-9,0),(-8,6),(-1,-2)$ and $(-6,-3)$
(i) (-9, -2), (-8,-4), $(2,2)$ and $(1,-3)$

Therefore area of quadrilateral = 35 sq. units.
(ii) $(-9,0),(-8,6),(-1,-2)$ and ($-6,-3$)

A ($-8,6$), B ($-9,0$), C ($-6,-3$) and D (-1, -2)
$x_{1}=-8, \quad x_{2}=-9, \quad x_{3}=-6, \quad x_{4}=-1, \quad y_{1}=6, y_{2}=0, \quad y_{3}=-3$ and $y_{4}=-2$
Area of the triangle $\Rightarrow \frac{1}{2}\left\{\begin{array}{lllll}x_{1} & x_{2} & x_{3} & x_{4} & x_{1} \\ y_{1} & y_{2} & y_{3} & y_{4} & y_{1}\end{array}\right\}$ Sq. Units
Area of quadrilateral $=\frac{1}{2}\left\{\begin{array}{rrrrr}-8 & -9 & -6 & -1 & -8 \\ 6 & 0 & -3 & -2 & 6\end{array}\right\}$

$=\frac{1}{2}[(0+27+12-6)-(-54+0+3+16)]$
$=\frac{1}{2}[(33)-(-35)]=\frac{1}{2}(33+35)$
$=\frac{1}{2}(88)=44$
Therefore area of quadrilateral $=44$ sq. units.
16. Find the value of ' k ' if the area of quadrilateral is $\mathbf{2 8}$ sq. units, whose vertices are $(-4,-2),(-3, k),(3,-2)$ and (2, 3)

Answer:

Area of the triangle $\Rightarrow \frac{1}{2}\left\{\begin{array}{lllll}x_{1} & x_{2} & x_{3} & x_{4} & x_{1} \\ y_{1} & y_{2} & y_{3} & y_{4} & y_{1}\end{array}\right\}$ Sq. Units
$x_{1}=-4, \quad x_{2}=-3, \quad x_{3}=3, \quad x_{4}=2, \quad y_{1}=-2, y_{2}=k, \quad y_{3}=-2$ and $y_{4}=3$

Area of quadrilateral $\Rightarrow \frac{1}{2}\left\{\begin{array}{ccccc}-4 & -3 & 3 & 2 & -4 \\ -2 & k & -2 & 3 & -2\end{array}\right\}=28$ sq. units.

$$
\begin{array}{ll}
\Rightarrow \frac{1}{2}[(-4 k+6+9-4)-(6+3 k-4-12)]=28 \text { sq. units } \\
\Rightarrow \frac{1}{2}[(11-4 k)-(3 k-10)] & =28 \\
\Rightarrow \frac{1}{2}(11-4 k-3 k+10) & =28 \\
\Rightarrow 21-7 k=28 \times 2 & \Rightarrow 21-7 k=56 \quad \Rightarrow-7 k=56-21 \\
\Rightarrow-7 k=35 & \Rightarrow k=\frac{35}{-7}
\end{array}
$$

Therefore $k=-5$
17. If the points $A(-3,9), B(a, b)$ and $C(4,-5)$ are collinear and if $a+b=1$, then find ' a ' and ' b '. Answer:
$x_{1}=-3, \quad x_{2}=a, \quad x_{3}=4, \quad y_{1}=9, \quad y_{2}=b \quad$ and $y_{3}=-5$
Area of the triangle $\Rightarrow \frac{1}{2}\left\{\begin{array}{llll}x_{1} & x_{2} & x_{3} & x_{1} \\ y_{1} & y_{2} & y_{3} & y_{1}\end{array}\right\} \quad=0$ Sq. Units
$\Rightarrow \frac{1}{2}\left(\begin{array}{rrrr}-3 & a & 4 & -3 \\ 9 & b & -5 & 9\end{array}\right)=0$
$\Rightarrow \frac{1}{2}[(-3 b-5 a+36)-(9 a+4 b+15)]=0$
$\Rightarrow \frac{1}{2}\left[(-3 b-5 a+36-9 a-4 b-15]=0 \quad \Rightarrow \frac{1}{2}[-14 a-7 b+21]=0\right.$
$\Rightarrow-14 a-7 b+21=0 \times 2 \quad \Rightarrow-14 a-7 b+21=0$
$\Rightarrow-14 a-7 b=-21$ (divided by-7)
$\Rightarrow 2 a+b=3$
-(1)
$\Rightarrow a+b=1$
(2) (given)

By solving (1) and (2) we get $a=2$ and $c=-1$
18. In the figure, the quadrilateral swimming pool shown is surrounded by the concrete patio.

Find the area of the patio.
Answer:
Required area of the patio = area of portion ABCD - Area of portion EFGH
Area of portion $A B C D \quad A(-4,-8), B(8,-4), C=(6,10)$ and $D(-10,6)$
$x_{1}=-4, \quad x_{2}=8, \quad x_{3}=6, x_{4}=-10, y_{1}=-8, y_{2}=-4, y_{3}=10$ and $y_{4}=6$
Area of the triangle $\Rightarrow \frac{1}{2}\left\{\begin{array}{lllll}x_{1} & x_{2} & x_{3} & x_{4} & x_{1} \\ y_{1} & y_{2} & y_{3} & y_{4} & y_{1}\end{array}\right\}$ Sq. Units

Area of quadrilateral $=\frac{1}{2}\left\{\begin{array}{ccccc}-4 & 8 & 6 & -10 & -4 \\ -8 & -4 & 10 & 6 & -8\end{array}\right\}$
$=\frac{1}{2}[(16+80+36+80)-(-64-24-100-24)]$
$=\frac{1}{2}[(212)-(-212)]=\frac{1}{2}(212+212)$
$=\frac{1}{2}(424)=212$
Therefore area of quadrilateral $A B C D=212$ sq. units.

Area of portion EFGH $E(-3,-5), F(6,-2), G=(3,7)$ and $H(-6,4)$

$x_{1}=-3, \quad x_{2}=6, \quad x_{3}=3, \quad x_{4}=-6, y_{1}=-5, y_{2}=-2, y_{3}=7$ and $y_{4}=4$
Area of the triangle $\Rightarrow \frac{1}{2}\left\{\begin{array}{lllll}x_{1} & x_{2} & x_{3} & x_{4} & x_{1} \\ y_{1} & y_{2} & y_{3} & y_{4} & y_{1}\end{array}\right\}$ Sq. Units

Area of quadrilateral $=\frac{1}{2}\left\{\begin{array}{rrrrr}-3 & 6 & 3 & -6 & -3 \\ -5 & -2 & 7 & 4 & -5\end{array}\right\}$
$\left.=\frac{1}{2}[6+42+12+30)-(-30-6-42-12)\right]$
$=\frac{1}{2}[(90)-(-90)]=\frac{1}{2}(90+90)$
$=\frac{1}{2}(180)=90$
Therefore area of quadrilateral $A B C D=90$ sq. units.
Required area of the patio $=$ area of portion ABCD - Area of portion EFGH
$=\quad 212-90$
$=122$ Sq. Units.
19. A triangular shaped glass with vertices at $A(-5,-4), B(1,6)$ and $C(7,-4)$ has to bepainted. If one bucket of paint covers 6 square feet, how many buckets of paint will be required to paint the whole glass, if only one coat of paint is applied.
Answer:
Area of the triangle $=\frac{1}{2}\left\{\begin{array}{llll}x_{1} & x_{2} & x_{3} & x_{1} \\ y_{1} & y_{2} & y_{3} & y_{1}\end{array}\right\}$ Sq. units.
$x_{1}=-5, \quad x_{2}=1, \quad x_{3}=7, \quad y_{1}=-4, \quad y_{2}=6$ and $y_{3}=-4$
Area of the triangle $=\frac{1}{2}\left(\begin{array}{cccc}-5 & 1 & 7 & -5 \\ -4 & 6 & -4 & -4\end{array}\right)=\frac{1}{2}[(-30-4-28)-(-4+42+20)]$

$$
=\frac{1}{2}[(-54)-(18)] \quad=\frac{1}{2}(-62-58) \quad=\frac{1}{2}(-120)=-60
$$

Area of the triangle $=60$ Sq. Units. (Area can't be - ve)
Number of paint cans required $\quad=\frac{\text { Area of the } \Delta \text { given }}{\text { Area of the paint can }}=\frac{60}{6}$
Number of paint cans required = 10 cans
20. In the figure, find area of (i) triangle AGF (ii) triangle FED (iii) Quadrilateral BCEG

Answer:

(i) triangle AGF

A ($(-5,3), G(-4.5,0.5)$ and $F(-2,3)$
Area of the triangle $=\frac{1}{2}\left\{\begin{array}{llll}x_{1} & x_{2} & x_{3} & x_{1} \\ y_{1} & y_{2} & y_{3} & y_{1}\end{array}\right\}$ Sq. units.
$x_{1}=-5, \quad x_{2}=-4.5, \quad x_{3}=-2, \quad y_{1}=3, \quad y_{2}=0.5$ and $y_{3}=3$

Area of the triangle AGF $=3.75$ Sq. Units.

(ii) triangle FED

$F((-2,3), E(1.5,1)$ and $D(1,3)$
Area of the triangle $=\frac{1}{2}\left\{\begin{array}{llll}x_{1} & x_{2} & x_{3} & x_{1} \\ y_{1} & y_{2} & y_{3} & y_{1}\end{array}\right\}$ Sq. units.
$x_{1}=-2, \quad x_{2}=1.5, \quad x_{3}=1, \quad y_{1}=3, \quad y_{2}=1$ and $y_{3}=3$
Area of the triangle $=\frac{1}{2}\left(\begin{array}{rrrr}-2 & 1.5 & 1 & -2 \\ 3 & 1 & 3 & 3\end{array}\right)=\frac{1}{2}[(-2+4.5+3)-(4.5+1-6)]$

$$
=\frac{1}{2}[(6.5)-(-0.5)] \quad=\frac{1}{2}(5.5+.5)=\frac{1}{2}(6)=3
$$

Area of the triangle FED $=3$ Sq. Units.
(iii) Quadrilateral BCEG
$B(-4,-2), C(2,-1), E(1.5,1)$ and $G(-4.5,0.5)$
$x_{1}=-4, x_{2}=2, x_{3}=1.5, x_{4}=-4.5, y_{1}=2, y_{2}=-1, y_{3}=1$ and $y_{4}=0.5$
Area of the triangle $\Rightarrow \frac{1}{2}\left\{\begin{array}{lllll}x_{1} & x_{2} & x_{3} & x_{4} & x_{1} \\ y_{1} & y_{2} & y_{3} & y_{4} & y_{1}\end{array}\right\}$ Sq. Units
Area of quadrilateral $=\frac{1}{2}\left\{\begin{array}{rrrrr}-4 & 2 & 1.5 & -4.5 & -4 \\ -2 & -1 & 1 & 0.5 & -2\end{array}\right\}$
$\left.=\frac{1}{2}[4+2+0.75+9)-(-4-1.5-4.5-2)\right]$
$=\frac{1}{2}[(15.75)-(-4)]=\frac{1}{2}(15.75+12)$
$=\frac{1}{2}(27.75) \quad=13.875$
Therefore area of quadrilateral BCEG $=13.86$ sq. units.

MATRIX

1. Consider the following information regaarding the number of men and women in three facatories, I, II and III

Factory	Men	Women
I	23	18
II	47	36
II	15	16

Represent the above information in the form of matrix. What does the entry in the second row and first column resresent?

Answer:

The information is represented in the form of a 3×2 matrix as follows
$A=\left[\begin{array}{ll}23 & 18 \\ 47 & 36 \\ 15 & 16\end{array}\right]$ The entry in the second row and first column represent that there are 47 men workers in factory II
2. If a matrix has 16 elements, what are the possible orders it can have?

Answer:
We know that a matrix of order $m \times n$, has mn elements. Thus to find all possible ordoers of a matrix with 16 elements, we will find all ordered paris of natural numbers whose product is 16.
Such ordered pairs are (1, 16), (16, 1), (4, 4), (8, 2) and (2, 8)
Hence the possible orders are $1 \times 16,16 \times 1,4 \times 4,8 \times 2,2 \times 8$
3. Construct 3×3 matrix whose elements are $a_{i j}=i^{2} j^{2}$

Answer:
The general 3×3 matrix is given by

a_{11}	$=1^{2} \times 1^{2}$	$=1 \times 1$	$=1$	a_{23}	$=2^{2} \times 3^{2}$	$=4 \times 9=36$
a_{12}	$=1^{2} \times 2^{2}$	$=1 \times 4$	$=4$	a_{31}	$=3^{2} \times 1^{2}$	$=9 \times 1=9$
a_{13}	$=1^{2} \times 3^{2}$	$=1 \times 9$	$=9$	a_{32}	$=3^{2} \times 2^{2}$	$=9 \times 4=36$
a_{21}	$=2^{2} \times 1^{2}$	$=4 \times 1$	$=4$	a_{33}	$=3^{2} \times 3^{2}$	$=9 \times 9=81$
a_{22}	$=2^{2} \times 2^{2}$	$=4 \times 4$	$=16$			

Hence required matrix $A=\left(\begin{array}{ccc}1 & 4 & 9 \\ 4 & 16 & 36 \\ 9 & 36 & 81\end{array}\right)$
4. Find the value of a, b, c, d from the equation $\left(\begin{array}{cc}a-b & 2 a+c \\ 2 a-b & 3 c+d\end{array}\right)=\left(\begin{array}{ll}1 & 5 \\ 0 & 2\end{array}\right)$

Answer:
The given matrices are equal. Thus all corresponding elements are equal.
Therefore,

$$
\begin{align*}
& a-b=1 \text {-------------- (1) } \tag{2}\\
& 2 a+c=5 \\
& 2 a-b=0 \tag{3}\\
& 3 c+d=2 \tag{4}
\end{align*}
$$

(3) gives $\quad 2 a-b=0 \quad \Rightarrow 2 a=b$

Put $2 a=b$ in equation (1) $\quad \Rightarrow a-2 a=1 \quad \Rightarrow-a=1 \quad \Rightarrow a=-1$
Put $a=-1$ in equation (5) $\quad \Rightarrow 2(-1)=b$ $\Rightarrow-2=b \quad \Rightarrow b=-2$
Put $a=-1$ in equation (2) $\quad \Rightarrow 2(-1)+c=5 \quad \Rightarrow-2+c=5 \quad \Rightarrow c=5+2 \quad \Rightarrow c=7$
Put $c=7$ in equation (4) $\quad \Rightarrow 3(7)+d=2 \quad \Rightarrow 21+d=2 \Rightarrow d=2-21 \Rightarrow d=-19$
Therefore $a=-1, b=-2, c=7$ and $d=-19$
5. If a matrix has $\mathbf{1 8}$ elements, what are the possible orders it can have? What if it has 6 elements ? Answer:
Given a matrix has 18 elements.
The possible orders of the matrix are $18 \times 1,1 \times 18,9 \times 2,2 \times 9,6 \times 3$ and 3×6.
If the matrix has 6 elements
The order are $1 \times 6,6 \times 1,3 \times 2,2 \times 3$
6. Construct a 3×3 matrix whose elements are given by $a_{i j}=|i-2 j|$

Answer:
The general 3×3 matrix is given by

$$
A=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right) \quad \Rightarrow \boldsymbol{a}_{i j}=|\boldsymbol{i}-\mathbf{2 j}|
$$

$a_{11}=\|1-2(1)\|$	$=\|1-2\|$	$=\|-1\|=1$				
$a_{12}=\|1-2(2)\|$	$=\|1-4\|$	$=\|-3\|=3$	$a_{23}=\|2-2(3)\|$	$=\|2-6\|$	$=\|-4\|=4$	
$a_{13}=\|1-2(3)\|$	$=\|1-6\|$	$=\|-5\|=5$	a_{31}	$=\|3-2(1)\|$	$=\|3-2\|$	$=\|1\|=1$
$a_{21}=\|2-2(1)\|$	$=\|2-2\|$	$=\|0\|=0$	$=\|3-2(2)\|$	$=\|3-4\|$	$=\|-1\|=1$	
$a_{22}=\|2-2(2)\|$	$=\|2-4\|$	$=\|-2\|=2$				

Hence required matrix $A=\left(\begin{array}{lll}1 & 3 & 5 \\ 0 & 2 & 4 \\ 1 & 1 & 3\end{array}\right)$
7. If $A=\left(\begin{array}{ccc}5 & 4 & 3 \\ 1 & -7 & 9 \\ 3 & 8 & 2\end{array}\right)$ then find the transpose of A

Answer:
$A=\left(\begin{array}{ccc}5 & 4 & 3 \\ 1 & -7 & 9 \\ 3 & 8 & 2\end{array}\right) \Rightarrow A^{T}=\left(\begin{array}{ccc}5 & 1 & 3 \\ 4 & -7 & 8 \\ 3 & 9 & 2\end{array}\right)$
8. If $A=\left(\begin{array}{cc}\sqrt{7} & -3 \\ -\sqrt{5} & 2 \\ \sqrt{3} & -5\end{array}\right)$ then find the transpose of $-A$

Answer:

$$
A=\left(\begin{array}{cc}
\sqrt{7} & -3 \\
-\sqrt{5} & 2 \\
\sqrt{3} & -5
\end{array}\right) \quad \Rightarrow-A=\left(\begin{array}{cc}
-\sqrt{7} & 3 \\
\sqrt{5} & -2 \\
-\sqrt{3} & 5
\end{array}\right) \quad \Rightarrow-A^{T}=\left(\begin{array}{ccc}
-\sqrt{7} & \sqrt{5} & -\sqrt{3} \\
3 & -2 & 5
\end{array}\right)
$$

9. If $A=\left(\begin{array}{ccc}5 & 2 & 2 \\ -\sqrt{17} & 0.7 & \frac{5}{2} \\ 8 & 3 & 1\end{array}\right)$ then verify $\left(A^{T}\right)^{T}=A$

Answer:

$A=\left(\begin{array}{ccc}5 & 2 & 2 \\ -\sqrt{17} & 0.7 & \frac{5}{2} \\ 8 & 3 & 1\end{array}\right) \quad \Rightarrow A^{T}=\left(\begin{array}{ccc}5 & -\sqrt{17} & 8 \\ 2 & 0.7 & 3 \\ 2 & \frac{5}{2} & 1\end{array}\right) \quad \Rightarrow\left(A^{T}\right)^{\top}=\left(\begin{array}{ccc}5 & 2 & 2 \\ -\sqrt{17} & 0.7 & \frac{5}{2} \\ 8 & 3 & 1\end{array}\right)=A$
10. Find the values of x, y and z from the following equations.
(i) $\left(\begin{array}{cc}12 & 3 \\ x & \frac{3}{2}\end{array}\right)=\left(\begin{array}{ll}y & z \\ 3 & 5\end{array}\right)$
(ii) $\left(\begin{array}{cc}x+y & 2 \\ 5+z & x y\end{array}\right)=\left(\begin{array}{ll}6 & 2 \\ 5 & 8\end{array}\right)$
(iii) $\left(\begin{array}{c}x+y+z \\ x+z \\ y+z\end{array}\right)=\left(\begin{array}{l}9 \\ 5 \\ 7\end{array}\right)$
(i) $\quad\left(\begin{array}{cc}12 & 3 \\ x & \frac{3}{2}\end{array}\right)=\left(\begin{array}{ll}y & z \\ 3 & 5\end{array}\right)$

Answer:

$X=3, y=12$ and $z=3$
(ii) $\quad\left(\begin{array}{cc}x+y & 2 \\ 5+z & x y\end{array}\right)=\left(\begin{array}{ll}6 & 2 \\ 5 & 8\end{array}\right)$

Answer:

$5+z=5 \quad \Rightarrow z=5-5 \quad \Rightarrow z=\mathbf{0}$
$x+y=6 \quad \Rightarrow x=6-y \quad-----(1)$
$x y=8 \quad \Rightarrow(6-y) y=8 \quad(b y$ (1))
$6 y-y^{2}=8 \quad \Rightarrow 6 y-y^{2}-8=0 \quad \Rightarrow-y^{2}+6 y-8=0$
$\Rightarrow y^{2}-6 y+8=0 \quad \Rightarrow(y-4)(y-2)=0$
$\Rightarrow \boldsymbol{y}=4$ and $\boldsymbol{y}=2$

$$
\begin{array}{lll}
\text { If } y=4 & \Rightarrow x=6-4 & \Rightarrow x=2 \\
\text { If } y=2 & \Rightarrow x=6-2 & \Rightarrow x=4
\end{array}
$$

(iii) $\quad\left(\begin{array}{c}x+y+z \\ x+z \\ y+z\end{array}\right)=\left(\begin{array}{l}9 \\ 5 \\ 7\end{array}\right)$

Answer:

$$
\begin{align*}
& x+y+z=9 \tag{1}\\
& x+z=5 \\
& y+z=7
\end{align*}
$$

Substitute equation (2) in (1)
we get $(x+z+y)=9$ $\Rightarrow 5+y=9 \quad \Rightarrow y=9-5 \quad \Rightarrow y=4$

Substitute equation (3) in (1)
we get $(x+y+z)=9 \quad \Rightarrow x+7=9 \quad \Rightarrow x=9-7 \quad \Rightarrow x=2$
Substitute ' x ' and ' y ' values in equation (1)
we get $(x+y+z)=9 \quad \Rightarrow 2+4+z=9 \quad \Rightarrow 6+z=9 \quad \Rightarrow z=9-6 \quad \Rightarrow z=3$
Solution $x=2, y=4$ and $z=3$
11. In the matrix $A=\left(\begin{array}{cccc}8 & 9 & 4 & 3 \\ -1 & \sqrt{7} & \frac{\sqrt{3}}{2} & 5 \\ 1 & 4 & 3 & 0 \\ 6 & 8 & -11 & 1\end{array}\right)$ write
(i) The number of elements
(ii) The order of the matrix
(iii) Write the elements of $a_{22}, a_{23}, a_{24}, a_{34}, a_{43}, a_{44}$.

Answer:

(i) A has 4 rows and 4 columns

$$
\text { Therefore number of elements }=4 \times 4=16
$$

(ii) Order of matrix $=4 \times 4$
(iii) $\begin{array}{llllll}a_{22}=\sqrt{7} & a_{23}=\frac{\sqrt{3}}{2} & a_{24}=5 & a_{34}=0 & a_{43}=-11 & a_{44}=1\end{array}$
12. If $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right), B=\left(\begin{array}{lll}1 & 7 & 0 \\ 1 & 3 & 1 \\ 2 & 4 & 0\end{array}\right)$, find $A+B$

Answer:

$A+B=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)+\left(\begin{array}{lll}1 & 7 & 0 \\ 1 & 3 & 1 \\ 2 & 4 & 0\end{array}\right) \quad \Rightarrow\left(\begin{array}{lll}1+1 & 2+7 & 3+0 \\ 4+1 & 5+3 & 6+1 \\ 7+2 & 8+4 & 9+0\end{array}\right)$
$A+B=\left(\begin{array}{ccc}2 & 9 & 3 \\ 5 & 8 & 7 \\ 9 & 12 & 9\end{array}\right)$
13. Two examinations were conoducted for three groups of students namely group -1, group - 2 , group-3 and their data on average of marks for the subjects Tamil, English, Science and Mathematics are given below in the form of matrices A and B. Find the total marks of both the examinations for all the three groups.

$\boldsymbol{A}=$		Tamil	English	Science	Maths
	group 1	22	15	14	23
	group 2	50	62	21	30
	group 3	53	80	32	40

$B=$		Tamil	English	Science	Maths
	group 1	(20	38	15	40
	group 2	18	12	17	80
	group 3	81	47	52	18

Answer:

The total marks in both the examinations for all the three groups is the sum of the given matrices.
$A+B=\left(\begin{array}{cccc}22+20 & 15+38 & 14+15 & 23+40 \\ 50+18 & 62+12 & 21+17 & 30+80 \\ 53+81 & 80+47 & 32+52 & 40+18\end{array}\right)$

14. If $A=\left(\begin{array}{ccc}1 & 3 & -2 \\ 5 & -4 & 6 \\ -3 & 2 & 9\end{array}\right), B=\left(\begin{array}{ll}1 & 8 \\ 3 & 4 \\ 9 & 6\end{array}\right)$, then find $A+B$

Answer:

It is not possible to add A and B because they have different orders.
15. If $A=\left(\begin{array}{rrr}7 & 8 & 6 \\ 1 & 3 & 9 \\ -4 & 3 & -1\end{array}\right), B=\left(\begin{array}{rcc}4 & 11 & -3 \\ -1 & 2 & 4 \\ 7 & 5 & 0\end{array}\right)$ then find $2 A+B$

Answer:

$2 A=2\left(\begin{array}{ccc}7 & 8 & 6 \\ 1 & 3 & 9 \\ -4 & 3 & -1\end{array}\right) \quad \Rightarrow 2 A=\left(\begin{array}{ccc}14 & 16 & 12 \\ 2 & 6 & 18 \\ -8 & 6 & -2\end{array}\right)$
$2 A+B=\left(\begin{array}{ccc}14 & 16 & 12 \\ 2 & 6 & 18 \\ -8 & 6 & -2\end{array}\right)+\left(\begin{array}{ccc}4 & 11 & -3 \\ -1 & 2 & 4 \\ 7 & 5 & 0\end{array}\right) \quad \Rightarrow 2 A+B=\left(\begin{array}{ccc}14+4 & 16+11 & 12-3 \\ 2-1 & 6+2 & 18+4 \\ -8+7 & 6+5 & -2+0\end{array}\right)$
$2 A+B=\left(\begin{array}{ccc}18 & 27 & 9 \\ 1 & 8 & 22 \\ -1 & 11 & -2\end{array}\right)$
16. If $A=\left(\begin{array}{ccc}5 & 4 & -2 \\ \frac{1}{2} & \frac{3}{4} & \sqrt{2} \\ 1 & 9 & 4\end{array}\right), B=\left(\begin{array}{ccc}-7 & 4 & -3 \\ \frac{1}{4} & \frac{7}{2} & 3 \\ 5 & -6 & 9\end{array}\right)$ then find $4 A-3 B$

Answer:

$4 A=4\left(\begin{array}{ccc}5 & 4 & -2 \\ \frac{1}{2} & \frac{3}{4} & \sqrt{2} \\ 1 & 9 & 4\end{array}\right) \quad \Rightarrow 4 A=\left(\begin{array}{ccc}20 & 16 & -8 \\ 2 & 3 & 4 \sqrt{2} \\ 4 & 36 & 16\end{array}\right)$
$3 B=3\left(\begin{array}{ccc}-7 & 4 & -3 \\ \frac{1}{4} & \frac{7}{2} & 3 \\ 5 & -6 & 9\end{array}\right) \quad \Rightarrow 3 B=\left(\begin{array}{ccc}-21 & 12 & -9 \\ \frac{3}{4} & \frac{21}{2} & 9 \\ 15 & -18 & 27\end{array}\right)$
$4 A-3 B=\left(\begin{array}{ccc}20 & 16 & -8 \\ 2 & 3 & 4 \sqrt{2} \\ 4 & 36 & 16\end{array}\right)-\left(\begin{array}{ccc}-21 & 12 & -9 \\ \frac{3}{4} & \frac{21}{2} & 9 \\ 15 & -18 & 27\end{array}\right)$
$4 A-3 B=\left(\begin{array}{ccc}20 & 16 & -8 \\ 2 & 3 & 4 \sqrt{2} \\ 4 & 36 & 16\end{array}\right)-\left(\begin{array}{ccc}-21 & 12 & -9 \\ \frac{3}{4} & \frac{21}{2} & 9 \\ 15 & -18 & 27\end{array}\right)=\left(\begin{array}{ccc}20 & 16 & -8 \\ 2 & 3 & 4 \sqrt{2} \\ 4 & 36 & 16\end{array}\right)+\left(\begin{array}{ccc}21 & -12 & 9 \\ -\frac{3}{4} & -\frac{21}{2} & -9 \\ -15 & 18 & -27\end{array}\right)$
$4 A-3 B=\left(\begin{array}{cccc}20+21 & 16-12 & -8+9 \\ 2-\frac{3}{4} & 3-\frac{21}{2} & 4 \sqrt{2} & -9 \\ 4-15 & 36+18 & 16-27\end{array}\right)$
$4 A-3 B=\left(\begin{array}{ccc}41 & 4 & 1 \\ \frac{5}{4} & -\frac{15}{2} & 4 \sqrt{2}-9 \\ -11 & 54 & -11\end{array}\right)$
17. Find the value of a, b, c, d, x, y from the following matrix equation

$$
\left(\begin{array}{cc}
d & 8 \\
3 b & a
\end{array}\right)+\left(\begin{array}{cc}
3 & a \\
-2 & -4
\end{array}\right)=\left(\begin{array}{cc}
2 & 2 a \\
b & 4 c
\end{array}\right)+\left(\begin{array}{cc}
0 & 1 \\
-5 & 0
\end{array}\right)
$$

Answer:

First, we add the two matrices on both left and right hand sides we get
$\left(\begin{array}{cc}d+3 & 8+a \\ 3 b-2 & a-4\end{array}\right)=\left(\begin{array}{ll}2+0 & 2 a+1 \\ b-5 & 4 c+0\end{array}\right) \quad \Rightarrow\left(\begin{array}{cc}d+3 & 8+a \\ 3 b-2 & a-4\end{array}\right)=\left(\begin{array}{cc}2 & 2 a+1 \\ b-5 & 4 c+0\end{array}\right)$
Equating the corroesponding elements of the two matrices, we have
$d+3=2$
$\Rightarrow d=2-3$
$\Rightarrow d=-1$
$8+a=2 a+1$
$\Rightarrow a-2 a=1-8$
$\Rightarrow-a=-7 \quad \Rightarrow a=7$
$3 b-2=b-5$
$\Rightarrow 3 b-b=-5+2$
$\Rightarrow 2 b=-3 \quad \Rightarrow b=\frac{-3}{2}$
$\Rightarrow 7-4=4 c \quad \Rightarrow 3=4 c$
$c=\frac{3}{4}$

Therefore $a=7, b=\frac{-3}{2}, c=\frac{3}{4}$ and $d=-1$
18. If $A=\left(\begin{array}{lll}1 & 8 & 3 \\ 3 & 5 & 0 \\ 8 & 7 & 6\end{array}\right), B=\left(\begin{array}{ccc}8 & -6 & -4 \\ 2 & 11 & -3 \\ 0 & 1 & 5\end{array}\right), C=\left(\begin{array}{crc}5 & 3 & 0 \\ -1 & -7 & 2 \\ 1 & 4 & 3\end{array}\right)$
Compute the following (i) $3 A+2 B-C$
(ii) $\frac{1}{2} A-\frac{3}{2} B$
(i) $3 A+2 B-C$

$$
\begin{array}{ll}
3 A=3\left(\begin{array}{lll}
1 & 8 & 3 \\
3 & 5 & 0 \\
8 & 7 & 6
\end{array}\right) & \Rightarrow 3 A=\left(\begin{array}{ccc}
3 & 24 & 9 \\
9 & 15 & 0 \\
24 & 21 & 18
\end{array}\right) \\
2 B=2\left(\begin{array}{ccc}
8 & -6 & -4 \\
2 & 11 & -3 \\
0 & 1 & 5
\end{array}\right) \Rightarrow 2 B=\left(\begin{array}{ccc}
16 & -12 & -8 \\
4 & 22 & -6 \\
0 & 2 & 10
\end{array}\right)
\end{array}
$$

$$
3 A+2 B-C=\left(\begin{array}{ccc}
3 & 24 & 9 \\
9 & 15 & 0 \\
24 & 21 & 18
\end{array}\right)+\left(\begin{array}{ccc}
16 & -12 & -8 \\
4 & 22 & -6 \\
0 & 2 & 10
\end{array}\right)-\left(\begin{array}{crc}
5 & 3 & 0 \\
-1 & -7 & 2 \\
1 & 4 & 3
\end{array}\right)
$$

$$
3 A+2 B-C=\left(\begin{array}{ccc}
3 & 24 & 9 \\
9 & 15 & 0 \\
24 & 21 & 18
\end{array}\right)+\left(\begin{array}{ccc}
16 & -12 & -8 \\
4 & 22 & -6 \\
0 & 2 & 10
\end{array}\right)+\left(\begin{array}{rrr}
-5 & -3 & 0 \\
1 & 7 & -2 \\
-1 & -4 & -3
\end{array}\right)
$$

$$
3 A+2 B-C=\left(\begin{array}{ccc}
3+16-5 & 24-12-3 & 9-8+0 \\
9+4+1 & 15+22+7 & 0-6-2 \\
24+0-1 & 21+2-4 & 18+10-3
\end{array}\right)
$$

$$
3 A+2 B-C=\left(\begin{array}{ccc}
14 & 9 & 1 \\
14 & 44 & -8 \\
23 & 19 & 25
\end{array}\right)
$$

19. If $A=\left(\begin{array}{rr}1 & 9 \\ 3 & 4 \\ 8 & -3\end{array}\right), B=\left(\begin{array}{ll}5 & 7 \\ 3 & 3 \\ 1 & 0\end{array}\right)$ then verify that
(i) $A+B=B+A$
(ii) $A+(-A)=(-A)+A=0$

Answer:

(i) $A+B=B+A$
$L H S=A+B=\left(\begin{array}{rr}1 & 9 \\ 3 & 4 \\ 8 & -3\end{array}\right)+\left(\begin{array}{ll}5 & 7 \\ 3 & 3 \\ 1 & 0\end{array}\right) \Rightarrow A+B=\left(\begin{array}{rr}1+5 & 9+7 \\ 3+3 & 4+3 \\ 8+1 & -3+0\end{array}\right) \quad \Rightarrow A+B=\left(\begin{array}{rr}6 & 16 \\ 6 & 7 \\ 9 & -3\end{array}\right)----(1)$
$R H S=B+A=\left(\begin{array}{ll}5 & 7 \\ 3 & 3 \\ 1 & 0\end{array}\right)+\left(\begin{array}{rr}1 & 9 \\ 3 & 4 \\ 8 & -3\end{array}\right) \quad \Rightarrow B+A=\left(\begin{array}{ll}5+1 & 7+9 \\ 3+3 & 3+4 \\ 1+8 & 0-3\end{array}\right) \quad \Rightarrow B+A=\left(\begin{array}{rr}6 & 16 \\ 6 & 7 \\ 9 & -3\end{array}\right)----(2)$

From (1) and (2) LHS = RHS

(ii) $A+(-A)=(-A)+A=0$

Answer:

$A=\left(\begin{array}{rr}1 & 9 \\ 3 & 4 \\ 8 & -3\end{array}\right)$ and $-A=\left(\begin{array}{rr}-1 & -9 \\ -3 & -4 \\ -8 & 3\end{array}\right)$
$A+(-A)=\left(\begin{array}{rr}1 & 9 \\ 3 & 4 \\ 8 & -3\end{array}\right)+\left(\begin{array}{rr}-1 & -9 \\ -3 & -4 \\ -8 & 3\end{array}\right) \Rightarrow A+(-A)=\left(\begin{array}{rr}1-1 & 9-9 \\ 3-3 & 4-4 \\ 8-8 & -3+3\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right)$
$(-A)+A=\left(\begin{array}{cc}-1 & -9 \\ -3 & -4 \\ -8 & 3\end{array}\right)+\left(\begin{array}{cc}1 & 9 \\ 3 & 4 \\ 8 & -3\end{array}\right) \Rightarrow(-A)+A=\left(\begin{array}{cc}-1+1 & -9+9 \\ -3+3 & -4+4 \\ -8+8 & 3-3\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right)$
From (1) and (2) LHS = RHS
20. If $A=\left(\begin{array}{ccc}4 & 3 & 1 \\ 2 & 3 & -8 \\ 1 & 0 & -4\end{array}\right), B=\left(\begin{array}{ccc}2 & 3 & 4 \\ 1 & 9 & 2 \\ -7 & 1 & -1\end{array}\right), C=\left(\begin{array}{ccc}8 & 3 & 4 \\ 1 & -2 & 3 \\ 2 & 4 & -1\end{array}\right)$, then verify that $A+(B+C)=(A+B)+C$

Answer:

$L H S=A+(B+C)$
$B+C=\left(\begin{array}{ccc}2 & 3 & 4 \\ 1 & 9 & 2 \\ -7 & 1 & -1\end{array}\right)+\left(\begin{array}{ccc}8 & 3 & 4 \\ 1 & -2 & 3 \\ 2 & 4 & -1\end{array}\right) \Rightarrow B+C=\left(\begin{array}{ccc}2+8 & 3+3 & 4+4 \\ 1+1 & 9-2 & 2+3 \\ -7+2 & 1+4 & -1-1\end{array}\right)$
$B+C=\left(\begin{array}{ccc}10 & 6 & 8 \\ 2 & 7 & 5 \\ -5 & 5 & -2\end{array}\right)$
$A+(B+C)=\left(\begin{array}{lll}4 & 3 & 1 \\ 2 & 3 & -8 \\ 1 & 0 & -4\end{array}\right)+\left(\begin{array}{ccc}10 & 6 & 8 \\ 2 & 7 & 5 \\ -5 & 5 & -2\end{array}\right)=\left(\begin{array}{ccc}4+10 & 3+6 & 1+8 \\ 2+2 & 3+7 & -8+5 \\ 1-5 & 0+5 & -4-2\end{array}\right)$
$A+(B+C)=\left(\begin{array}{ccc}14 & 9 & 9 \\ 4 & 10 & -3 \\ -4 & 5 & -6\end{array}\right)$
RHS: $(A+B)+C$
$A+B=\left(\begin{array}{ccc}4 & 3 & 1 \\ 2 & 3 & -8 \\ 1 & 0 & -4\end{array}\right)+\left(\begin{array}{ccc}2 & 3 & 4 \\ 1 & 9 & 2 \\ -7 & 1 & -1\end{array}\right)=\left(\begin{array}{lll}4+2 & 3+3 & 1+4 \\ 2+1 & 3+9 & -8+2 \\ 1-7 & 0+1 & -4-1\end{array}\right)$
$A+B=\left(\begin{array}{rcr}6 & 6 & 5 \\ 3 & 12 & -6 \\ -6 & 1 & -5\end{array}\right)$
$(A+B)+C=\left(\begin{array}{ccc}6 & 6 & 5 \\ 3 & 12 & -6 \\ -6 & 1 & -5\end{array}\right)+\left(\begin{array}{ccc}8 & 3 & 4 \\ 1 & -2 & 3 \\ 2 & 4 & -1\end{array}\right)=\left(\begin{array}{ccc}6+8 & 6+3 & 5+4 \\ 3+1 & 12-2 & -6+3 \\ -6+2 & 1+4 & -5-1\end{array}\right)$
$(A+B)+C=\left(\begin{array}{ccc}14 & 9 & 9 \\ 4 & 10 & -3 \\ -4 & 5 & -6\end{array}\right)$

From (1) and (2) LHS = RHS

21. Find X and Y if $X+Y=\left(\begin{array}{ll}7 & 0 \\ 3 & 5\end{array}\right)$ and $X-Y=\left(\begin{array}{ll}3 & 0 \\ 0 & 4\end{array}\right)$

Answer:

Given $\mathrm{X}+\mathrm{Y}=\left(\begin{array}{ll}7 & 0 \\ 3 & 5\end{array}\right)$

$$
\Rightarrow X=\left(\begin{array}{cc}
5 & 0 \tag{1}\\
3 / 2 & 9 / 2
\end{array}\right)
$$

$$
\mathrm{X}-\mathrm{Y}=\left(\begin{array}{ll}
3 & 0 \tag{2}\\
0 & 4
\end{array}\right)
$$

$(1)-(2) \Rightarrow 2 Y=\left(\begin{array}{ll}4 & 0 \\ 3 & 1\end{array}\right)$
$(1)+(2) \Rightarrow 2 \mathrm{X}=\left(\begin{array}{cc}10 & 0 \\ 3 & 9\end{array}\right)$

$$
\Rightarrow \quad \mathrm{Y}=\left(\begin{array}{cc}
2 & 0 \\
3 / 2 & 1 / 2
\end{array}\right)
$$

22. If $A=\left(\begin{array}{lll}0 & 4 & 9 \\ 8 & 3 & 7\end{array}\right)$, and $B=\left(\begin{array}{lll}7 & 3 & 8 \\ 1 & 4 & 9\end{array}\right)$ then find the value of (i) $B-5 A \quad$ (ii) $3 A-9 B$

Answer:

(i) $B-5 A$
$5 A=5\left(\begin{array}{lll}0 & 4 & 9 \\ 8 & 3 & 7\end{array}\right) \quad 5 A=\left(\begin{array}{ccc}0 & 20 & 45 \\ 40 & 15 & 35\end{array}\right)$
$B-5 A=\left(\begin{array}{lll}7 & 3 & 8 \\ 1 & 4 & 9\end{array}\right)-\left(\begin{array}{ccc}0 & 20 & 45 \\ 40 & 15 & 35\end{array}\right) \quad \Rightarrow B-5 A=\left(\begin{array}{lll}7 & 3 & 8 \\ 1 & 4 & 9\end{array}\right)+\left(\begin{array}{ccc}0 & -20 & -45 \\ -40 & -15 & -35\end{array}\right)$
$B-5 A=\left(\begin{array}{ccc}7+0 & 3-20 & 8-45 \\ 1-40 & 4-15 & 9-35\end{array}\right)$
$B-5 A=\left(\begin{array}{ccc}7 & -17 & -37 \\ -39 & -11 & -26\end{array}\right)$
(ii) $3 A-9 B$
$3 A=3\left(\begin{array}{lll}0 & 4 & 9 \\ 8 & 3 & 7\end{array}\right) \quad \Rightarrow 3 A=\left(\begin{array}{ccc}0 & 12 & 27 \\ 24 & 9 & 21\end{array}\right)$
$9 B=9\left(\begin{array}{lll}7 & 3 & 8 \\ 1 & 4 & 9\end{array}\right) \quad \Rightarrow 9 B=\left(\begin{array}{ccc}63 & 27 & 72 \\ 9 & 36 & 81\end{array}\right)$
$3 A-9 B=\left(\begin{array}{ccc}0 & 12 & 27 \\ 24 & 9 & 21\end{array}\right)-\left(\begin{array}{ccc}63 & 27 & 72 \\ 9 & 36 & 81\end{array}\right) \Rightarrow 3 A-9 B=\left(\begin{array}{ccc}0 & 12 & 27 \\ 24 & 9 & 21\end{array}\right)+\left(\begin{array}{ccc}-63 & -27 & -72 \\ -9 & -36 & -81\end{array}\right)$
$3 A-9 B=\left(\begin{array}{ccc}0-63 & 12-27 & 27-72 \\ 24-9 & 9-36 & 21-81\end{array}\right)$
$3 A-9 B=\left(\begin{array}{rrr}-63 & -15 & -45 \\ 15 & -27 & -60\end{array}\right)$
23. Find the values of x, y, z if (i) $\left(\begin{array}{cc}x-3 & 3 x-z \\ x+y+7 & x+y+z\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 1 & 6\end{array}\right)$
(ii) $\left(\begin{array}{lll}x & y-z & z+3\end{array}\right)+(y$
$43)=\left(\begin{array}{ll}4 & 8\end{array}\right.$
16)

Answer:

(i) $\quad\left(\begin{array}{cc}x-3 & 3 x-z \\ x+y+7 & x+y+z\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 1 & 6\end{array}\right)$

Equating the corroesponding elements of the two matrices, we have
$x-3=1 \quad \Rightarrow x=1+3 \quad \Rightarrow x=4$
$3 x-z=0 \quad \Rightarrow 3(4)-z=0 \quad \Rightarrow 12-z=0 \quad \Rightarrow-z=0-12 \quad \Rightarrow z=-12$ (by (1))
$x+y+7=1 \quad \Rightarrow 4+y+7=1$
$\Rightarrow 11+y=1 \quad \Rightarrow y=1-11$
$\Rightarrow y=-10$
$x=4, y=-10$ and $z=-12$
(ii) $\left(\begin{array}{lll}x & y-z & z+3\end{array}\right)+\left(\begin{array}{lll}y & 4 & 3\end{array}\right)=\left(\begin{array}{lll}4 & 8 & 16\end{array}\right)$
$x+y=4$
(1)
$y-z=4$
$z+3+3=16 \Rightarrow z+6=16 \Rightarrow z=16-6 \quad \Rightarrow z=10$
Substitute ' z ' value in equation (2)
$y-10=4 \quad \Rightarrow y=4+10 \Rightarrow y=14$
Substitute ' y ' value in equation (1)
$x+14=4 \quad \Rightarrow x=4-14 \quad \Rightarrow x=-10$
$x=-10, y=14$ and $z=10$
24. Find x and y if $x\binom{4}{-3}+y\binom{-2}{3}=\binom{4}{6}$

Answer:

$4 x-2 y=4$ (divided by 2)
$2 x-y=2$
$-3 x+3 y=6 \quad$ (divided by 3)
$-x+y=2$
(1) $\Rightarrow 2 x-y=2$
$\begin{array}{ll}\text { (2) } \Rightarrow & \Rightarrow \mathrm{x}+\mathrm{y}=2 \\ \text { Adding, }\end{array}$

Substitute ' x 'value in equation (1) or (2)
$2(4)-y=2 \quad \Rightarrow 8-y=2 \quad \Rightarrow-y=2-8 \quad \Rightarrow-y=-6$
$y=6$
$x=4$ and $y=6$
25. Find the non - zero values of x satisfying the matrix equation
$x\left(\begin{array}{cc}2 x & 2 \\ 3 & x\end{array}\right)+2\left(\begin{array}{ll}8 & 5 x \\ 4 & 4 x\end{array}\right)=2\left(\begin{array}{cc}x^{2}+8 & 24 \\ 10 & 6 x\end{array}\right)$

Answer:

Given $\quad x\left(\begin{array}{cc}2 x & 2 \\ 3 & x\end{array}\right)+2\left(\begin{array}{ll}8 & 5 x \\ 4 & 4 x\end{array}\right)=2\left(\begin{array}{cc}x^{2}+8 & 24 \\ 10 & 6 x\end{array}\right)$
$\left(\begin{array}{cc}2 x^{2} & 2 x \\ 3 x & x^{2}\end{array}\right)+\left(\begin{array}{cc}16 & 10 x \\ 8 & 8 x\end{array}\right)=\left(\begin{array}{cc}2 x^{2}+16 & 48 \\ 20 & 12 x\end{array}\right) \Rightarrow\left(\begin{array}{cc}2 x^{2}+16 & 2 x+10 x \\ 3 x+8 & x^{2}+8 x\end{array}\right)=\left(\begin{array}{cc}2 x^{2}+16 & 48 \\ 20 & 12 x\end{array}\right)$
Equating the corroesponding elements of the two matrices, we have

$$
2 x+10 x=48 \quad \Rightarrow 12 x=48 \quad \Rightarrow x=\frac{48}{12} \quad \Rightarrow x=4
$$

26. Solve for $x, y:\binom{x^{2}}{y^{2}}+2\binom{-2 x}{-y}=\binom{-5}{8}$

Answer:

$$
\text { Given }\binom{x^{2}}{y^{2}}+2\binom{-2 x}{y}=\binom{5}{8}
$$

$$
\begin{array}{lr|r}
\Rightarrow & x^{2}-4 x=5 \\
\Rightarrow & x^{2}-4 x-5=0 \\
\Rightarrow & (x-5)(x+1)=0 & y^{2}-2 y=8 \\
\Rightarrow & x & y^{2}-2 y-8=0 \\
& \Rightarrow y-4)(y+2)=0 \\
\Rightarrow & \therefore y=4, y=-2
\end{array}
$$

27. If $A=\left(\begin{array}{lll}1 & 2 & 0 \\ 3 & 1 & 5\end{array}\right), B=\left(\begin{array}{lll}8 & 3 & 1 \\ 2 & 4 & 1 \\ 5 & 3 & 1\end{array}\right)$, find $A B$ and $B A$

Answer:

$A B=\left(\begin{array}{lll}1 & 2 & 0 \\ 3 & 1 & 5\end{array}\right) \times\left(\begin{array}{lll}8 & 3 & 1 \\ 2 & 4 & 1 \\ 5 & 3 & 1\end{array}\right) \quad \Rightarrow A B=\left(\begin{array}{ccc}8+4+0 & 3+8+0 & 1+2+0 \\ 24+2+25 & 9+4+15 & 3+1+5\end{array}\right)$
$A B=\left(\begin{array}{ccc}12 & 1 & 3 \\ 51 & 28 & 9\end{array}\right)$
$B A$ does not exist.
28. If $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right), B=\left(\begin{array}{ll}2 & 0 \\ 1 & 3\end{array}\right)$, find $A B$ and $B A$. Check if $A B=B A$

Answer:

$A B=\left(\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right) \times\left(\begin{array}{ll}2 & 0 \\ 1 & 3\end{array}\right) \quad \Rightarrow A B=\left(\begin{array}{ll}4+1 & 0+3 \\ 2+3 & 0+9\end{array}\right) \quad \Rightarrow A B=\left(\begin{array}{ll}5 & 3 \\ 5 & 9\end{array}\right)$
$B A=\left(\begin{array}{ll}2 & 0 \\ 1 & 3\end{array}\right) \times\left(\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right) \quad \Rightarrow B A=\left(\begin{array}{ll}4+0 & 2+0 \\ 2+3 & 1+9\end{array}\right) \quad \Rightarrow B A=\left(\begin{array}{cc}4 & 2 \\ 5 & 10\end{array}\right)$
From (1) and (2) $A B \neq B A$
29. If $A=\left(\begin{array}{cc}2 & -2 \sqrt{2} \\ \sqrt{2} & 2\end{array}\right)$, and $B=\left(\begin{array}{cc}2 & 2 \sqrt{2} \\ -\sqrt{2} & 2\end{array}\right)$ Show that A and B satisfy commutative property with respect to matrix multiplication

Answer:

We have show that $A B=B A$
$A B=\left(\begin{array}{cc}2 & -2 \sqrt{2} \\ \sqrt{2} & 2\end{array}\right) \times\left(\begin{array}{cc}2 & 2 \sqrt{2} \\ -\sqrt{2} & 2\end{array}\right) \Rightarrow A B=\left(\begin{array}{cc}4+4 & 4 \sqrt{2}-4 \sqrt{2} \\ 4 \sqrt{2}-4 \sqrt{2} & 4+4\end{array}\right) \Rightarrow A B=\left(\begin{array}{ll}8 & 0 \\ 0 & 8\end{array}\right)$
$B A=\left(\begin{array}{cc}2 & 2 \sqrt{2} \\ -\sqrt{2} & 2\end{array}\right) \times\left(\begin{array}{cc}2 & -2 \sqrt{2} \\ \sqrt{2} & 2\end{array}\right) \Rightarrow B A=\left(\begin{array}{cc}4+4 & -4 \sqrt{2}+4 \sqrt{2} \\ -2 \sqrt{2}+2 \sqrt{2} & 4+4\end{array}\right) \Rightarrow B A=\left(\begin{array}{ll}8 & 0 \\ 0 & 8\end{array}\right)----(2)$
From (1) and (2) $A B=B A$
30. Solve $\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)\binom{x}{y}=\binom{4}{5}$

Answer:

Given $\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)\binom{x}{y}=\binom{4}{5}$
$\binom{2 x+1 y}{x+2 y}=\binom{4}{5}$
Equating the corroesponding elements of the two matrices, we have
$2 x+y=4$
$x+2 y=5$
(1) $-2 \times(2)$ gives $2 x+y=4$

$$
\frac{2 x+4 y=10}{-3 y=-6} \text { gives } y=2
$$

Substitute ' y ' value in equation (1)
$2 x+2=4 \quad \Rightarrow 2 x=4-2 \quad \Rightarrow 2 x=2 \quad \Rightarrow x=1$
$x=1$ and $y=2$
31. If $A=\left(\begin{array}{cc}1 & 1 \\ -1 & 3\end{array}\right), B=\left(\begin{array}{cc}1 & 2 \\ -4 & 2\end{array}\right)$, and $C=\left(\begin{array}{cc}-7 & 6 \\ 3 & 2\end{array}\right)$ verify that $A(B+C)=A B+A C$

Answer:

LHS $=A(B+C)$
$B+C=\left(\begin{array}{cc}1 & 2 \\ -4 & 2\end{array}\right)+\left(\begin{array}{cc}-7 & 6 \\ 3 & 2\end{array}\right) \quad \Rightarrow B+C=\left(\begin{array}{cc}1-7 & 2+6 \\ -4+3 & 2+2\end{array}\right) \quad \Rightarrow B+C=\left(\begin{array}{ll}-6 & 8 \\ -1 & 4\end{array}\right)$
$A(B+C)=\left(\begin{array}{rr}1 & 1 \\ -1 & 3\end{array}\right) \times\left(\begin{array}{ll}-6 & 8 \\ -1 & 4\end{array}\right) \quad \Rightarrow A(B+C)=\left(\begin{array}{rr}-6-1 & 8+4 \\ 6-3 & -8+12\end{array}\right)$
$A(B+C)=\left(\begin{array}{cc}-7 & 12 \\ 3 & 4\end{array}\right)$
$R H S=A B+A C$
$A B=\left(\begin{array}{rr}1 & 1 \\ -1 & 3\end{array}\right) \times\left(\begin{array}{cc}1 & 2 \\ -4 & 2\end{array}\right) \quad \Rightarrow A B=\left(\begin{array}{cc}1-4 & 2+2 \\ -1-12 & -2+6\end{array}\right) \quad \Rightarrow A B=\left(\begin{array}{cc}-3 & 4 \\ -13 & 4\end{array}\right)$
$A C=\left(\begin{array}{rr}1 & 1 \\ -1 & 3\end{array}\right) \times\left(\begin{array}{cc}-7 & 6 \\ 3 & 2\end{array}\right) \quad \Rightarrow A C=\left(\begin{array}{cc}-7+3 & 6+2 \\ 7+9 & -6+6\end{array}\right) \quad \Rightarrow A C=\left(\begin{array}{cc}-4 & 8 \\ 16 & 0\end{array}\right)$
$A B+A C=\left(\begin{array}{cc}-3 & 4 \\ -13 & 4\end{array}\right)+\left(\begin{array}{cc}-4 & 8 \\ 16 & 0\end{array}\right) \quad \Rightarrow A B+A C=\left(\begin{array}{cc}-3-4 & 4+8 \\ -13+16 & 4+0\end{array}\right)$
$A B+A C=\left(\begin{array}{rr}-7 & 12 \\ 3 & 4\end{array}\right)$
From (1) and (2) LHS = RHS
32. If $A=\left(\begin{array}{ccc}1 & 2 & 1 \\ 2 & -1 & 1\end{array}\right)$, and $B=\left(\begin{array}{cc}2 & -1 \\ -1 & 4 \\ 0 & 2\end{array}\right)$ then show that $(A B)^{T}=B^{T} A^{T}$

Answer:

$L H S=(A B)^{T}$
$A B=\left(\begin{array}{ccc}1 & 2 & 1 \\ 2 & -1 & 1\end{array}\right) \times\left(\begin{array}{cc}2 & -1 \\ -1 & 4 \\ 0 & 2\end{array}\right) \Rightarrow A B\left(\begin{array}{cc}2-2+0 & -1+8+2 \\ 4+1+0 & -2-4+2\end{array}\right) \Rightarrow A B=\left(\begin{array}{cc}0 & 9 \\ 5 & -4\end{array}\right)$
$(A B)^{T}=\left(\begin{array}{rr}0 & 5 \\ 9 & -4\end{array}\right)$
$R H S=B^{T} \boldsymbol{A}^{T}$
$B^{T}=\left(\begin{array}{ccc}2 & -1 & 0 \\ -1 & 4 & 2\end{array}\right) \quad A^{T}=\left(\begin{array}{cc}1 & 2 \\ 2 & -1 \\ 1 & 1\end{array}\right)$
$B^{\top} A^{T}=\left(\begin{array}{rrr}2 & -1 & 0 \\ -1 & 4 & 2\end{array}\right) \times\left(\begin{array}{rr}1 & 2 \\ 2 & -1 \\ 1 & 1\end{array}\right) \quad \Rightarrow B^{\top} A^{T}\left(\begin{array}{rr}2-2+0 & 4+1+0 \\ -1+8+2 & -2-4+2\end{array}\right)$
$B^{\top} A^{T}=\left(\begin{array}{rr}0 & 9 \\ 9 & -4\end{array}\right)$
From (1) and (2) LHS = RHS
33. Find the order of the product matrix $A B$ if

	(i)	(ii)	(iii)	(iv)	(v)
Orders of A	3×3	4×3	4×2	4×5	1×1
Orders of B	3×3	3×2	2×2	5×1	1×3

34. If A is of order $p \times q$ and B is of order $q \times r$ what is the order $A B$ and $B A$?

Answer:

Given :
A is of order $p \times q$
B is of order $q \times r$
Therefore order of $A B=(p \times q) \times(q \times r)=p \times r$
Order of $B A$ is not defined (Number of columns in $B \&$ number of rows in A are not equal)
35. A has ' a ' rows and ' $a+3$ ' columns. B has ' b ' rows and ' $17-b$ ' columns, and if both products $A B$ and $B A$ exists, find ' a ' and ' b ' ?

Answer:

Given
Order of A is $a x(a+3)$
Order of B is $b x(17-b) \quad$ Product $A B$ exist.
$\Rightarrow a+3=b$ (Number of columns in $A=$ Number of rows in B)
$\Rightarrow a-b=-3$
Product $B A$ exist
$\Rightarrow 17-b=a$ (Number of columns in $B=$ Number of rows in A)
$\Rightarrow a+b=17$ \qquad
Solving (1) and (2)
$2 a=14$

$$
\Rightarrow a=7
$$

Substitute ' a ' value in (1)
$\Rightarrow 7-b=-3 \quad \Rightarrow-b=-3-7 \quad \Rightarrow-b=-10 \Rightarrow b=10$
Therefore $a=7$ and $b=10$
36. If $A=\left(\begin{array}{ll}2 & 5 \\ 4 & 3\end{array}\right), B=\left(\begin{array}{cc}1 & -3 \\ 2 & 5\end{array}\right)$, find $A B$ and $B A$. Check if $A B=B A$

Answer:

$A B=\left(\begin{array}{ll}2 & 5 \\ 4 & 3\end{array}\right) \times\left(\begin{array}{rr}1 & -3 \\ 2 & 5\end{array}\right) \quad \Rightarrow A B=\left(\begin{array}{cc}2+10 & -6+25 \\ 4+6 & -12+15\end{array}\right) \quad \Rightarrow A B=\left(\begin{array}{cc}12 & 19 \\ 10 & 3\end{array}\right)----------(1)$
$B A=\left(\begin{array}{rr}1 & -3 \\ 2 & 5\end{array}\right) \times\left(\begin{array}{ll}2 & 5 \\ 4 & 3\end{array}\right) \quad \Rightarrow B A=\left(\begin{array}{cc}2-12 & 5-9 \\ 4+20 & 10+15\end{array}\right) \quad \Rightarrow A B=\left(\begin{array}{rr}-10 & -4 \\ 24 & 25\end{array}\right)$
)
From (1) and (2) $A B \neq B A$
37. If $A=\left(\begin{array}{cc}1 & 3 \\ 5 & -1\end{array}\right), B=\left(\begin{array}{ccc}1 & -1 & 2 \\ 3 & 5 & 2\end{array}\right)$, and $C=\left(\begin{array}{ccc}1 & 3 & 2 \\ -4 & 1 & 3\end{array}\right)$ verify that $A(B+C)=A B+A C$

Answer:

LHS $=A(B+C)$
$B+C=\left(\begin{array}{rrr}1 & -1 & 2 \\ 3 & 5 & 2\end{array}\right)+\left(\begin{array}{ccc}1 & 3 & 2 \\ -4 & 1 & 3\end{array}\right) \quad \Rightarrow B+C=\left(\begin{array}{ccc}1+1 & -1+3 & 2+2 \\ 3-4 & 5+1 & 2+3\end{array}\right)$
$\Rightarrow B+C=\left(\begin{array}{rrr}2 & 2 & 4 \\ -1 & 6 & 5\end{array}\right)$
$A(B+C)=\left(\begin{array}{rr}1 & 3 \\ 5 & -1\end{array}\right) \times\left(\begin{array}{rrr}2 & 2 & 4 \\ -1 & 6 & 5\end{array}\right) \quad \Rightarrow A(B+C)=\left(\begin{array}{ccc}2-3 & 2+18 & 4+15 \\ 10+1 & 10-6 & 20-5\end{array}\right)$
$A(B+C)=\left(\begin{array}{ccc}-1 & 20 & 19 \\ 11 & 4 & 15\end{array}\right)$
$R H S=A B+A C$
$A B=\left(\begin{array}{rr}1 & 3 \\ 5 & -1\end{array}\right) \times\left(\begin{array}{rrr}1 & -1 & 2 \\ 3 & 5 & 2\end{array}\right) \quad \Rightarrow A B=\left(\begin{array}{ccc}1+9 & -1+15 & 2+6 \\ 5-3 & -5-5 & 10-2\end{array}\right) \Rightarrow A B=\left(\begin{array}{ccc}10 & 14 & 8 \\ 2 & -10 & 8\end{array}\right)$
$A C=\left(\begin{array}{cc}1 & 3 \\ 5 & -1\end{array}\right) \times\left(\begin{array}{ccc}1 & 3 & 2 \\ -4 & 1 & 3\end{array}\right) \quad \Rightarrow A C=\left(\begin{array}{ccc}1-12 & 3+3 & 2+9 \\ 5+4 & 15-1 & 10-3\end{array}\right) \Rightarrow A C=\left(\begin{array}{ccc}-11 & 6 & 11 \\ 9 & 14 & 7\end{array}\right)$
$A B+A C=\left(\begin{array}{ccc}10 & 14 & 8 \\ 2 & -10 & 8\end{array}\right)+\left(\begin{array}{ccc}-11 & 6 & 11 \\ 9 & 14 & 7\end{array}\right) \quad \Rightarrow A B+A C=\left(\begin{array}{ccc}10-11 & 14+6 & 8+11 \\ 2+9 & -10+14 & 8+7\end{array}\right)$
$A B+A C=\left(\begin{array}{ccc}-1 & 20 & 19 \\ 11 & 4 & 15\end{array}\right)$
From (1) and (2) LHS = RHS
38. Show that the matrices $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 1\end{array}\right), B=\left(\begin{array}{rr}1 & -2 \\ -3 & 1\end{array}\right)$ satisfy commutative property $A B=B A$ Answer:
$A B=\left(\begin{array}{ll}1 & 2 \\ 3 & 1\end{array}\right) \times\left(\begin{array}{rr}1 & -2 \\ -3 & 1\end{array}\right) \Rightarrow A B=\left(\begin{array}{ll}1-6 & -2+2 \\ 3-3 & -6+1\end{array}\right) \Rightarrow A B=\left(\begin{array}{rr}-5 & 0 \\ 0 & -5\end{array}\right)$
$B A=\left(\begin{array}{rr}1 & -2 \\ -3 & 1\end{array}\right) \times\left(\begin{array}{ll}1 & 2 \\ 3 & 1\end{array}\right) \Rightarrow B A=\left(\begin{array}{cc}1-6 & 2-2 \\ -3+3 & -6+1\end{array}\right) \Rightarrow B A=\left(\begin{array}{rr}-5 & 0 \\ 0 & -5\end{array}\right)$
From (1) and (2) $A B=B A$
39. Let $A=\left(\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right), B=\left(\begin{array}{ll}4 & 0 \\ 1 & 5\end{array}\right), C=\left(\begin{array}{ll}2 & 0 \\ 1 & 2\end{array}\right) \quad$ Show that \quad (i) $A(B C)=(A B) C$
(ii) $(A-B) C=A C-B C$ (iii) $(A-B)^{T}=A^{T}-B^{T}$
(i) $A(B C)=(A B) C$

Answer:

$L H S=A(B C)$
$B C=\left(\begin{array}{ll}4 & 0 \\ 1 & 5\end{array}\right) \times\left(\begin{array}{ll}2 & 0 \\ 1 & 2\end{array}\right) \quad \Rightarrow B C=\left(\begin{array}{ll}8+0 & 0+0 \\ 2+5 & 0+10\end{array}\right) \quad \Rightarrow B C=\left(\begin{array}{cc}8 & 0 \\ 7 & 10\end{array}\right)$
$A(B C)=\left(\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right) \times\left(\begin{array}{cc}8 & 0 \\ 7 & 10\end{array}\right) \quad \Rightarrow A(B C)=\left(\begin{array}{ll}8+14 & 0+20 \\ 8+21 & 0+30\end{array}\right) \quad \Rightarrow A(B C)=\left(\begin{array}{ll}22 & 20 \\ 29 & 30\end{array}\right)$
RHS :
(AB)C
$\begin{array}{lll}A B=\left(\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right) \times\left(\begin{array}{ll}4 & 0 \\ 1 & 5\end{array}\right) & \Rightarrow A B=\left(\begin{array}{ll}4+2 & 0+10 \\ 4+3 & 0+15\end{array}\right) & \Rightarrow A B=\left(\begin{array}{ll}6 & 10 \\ 7 & 15\end{array}\right) \\ (A B) C==\left(\begin{array}{ll}6 & 10 \\ 7 & 15\end{array}\right) \times\left(\begin{array}{ll}2 & 0 \\ 1 & 2\end{array}\right) & \Rightarrow(A B) C=\left(\begin{array}{ll}12+10 & 0+20 \\ 14+15 & 0+30\end{array}\right) & \Rightarrow(A B) C=\left(\begin{array}{ll}22 & 20 \\ 29 & 30\end{array}\right)\end{array}$

$$
\begin{align*}
& \Rightarrow A B=\left(\begin{array}{ll}
6 & 10 \\
7 & 15
\end{array}\right) \\
& \Rightarrow(A B) C=\left(\begin{array}{ll}
22 & 20 \\
29 & 30
\end{array}\right) \tag{2}
\end{align*}
$$

From (1) and (2) LHS = RHS

(ii) $(A-B) C=A C-B C$

Answer:

LHS $=(A-B) C$
$A-B=\left(\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right)-\left(\begin{array}{ll}4 & 0 \\ 1 & 5\end{array}\right) \quad \Rightarrow A-B=\left(\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right)+\left(\begin{array}{rr}-4 & 0 \\ -1 & -5\end{array}\right) \quad \Rightarrow A-B=\left(\begin{array}{ll}1-4 & 2+0 \\ 1-1 & 3-5\end{array}\right)$
$A-B=\left(\begin{array}{rr}-3 & 2 \\ 0 & -2\end{array}\right)$
$(A-B) C=\left(\begin{array}{rr}-3 & 2 \\ 0 & -2\end{array}\right) \times\left(\begin{array}{ll}2 & 0 \\ 1 & 2\end{array}\right) \quad \Rightarrow(A-B) C=\left(\begin{array}{rr}-6+2 & 0+4 \\ 0-2 & 0-4\end{array}\right)$
$(A-B) C=\left(\begin{array}{cc}-4 & 4 \\ -2 & -4\end{array}\right)$
$R H S=A C-B C$
$A C=\left(\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right) \times\left(\begin{array}{ll}2 & 0 \\ 1 & 2\end{array}\right) \quad \Rightarrow A C=\left(\begin{array}{ll}2+2 & 0+4 \\ 2+3 & 0+6\end{array}\right) \quad \Rightarrow A C=\left(\begin{array}{ll}4 & 4 \\ 5 & 6\end{array}\right)$
$B C=\left(\begin{array}{ll}4 & 0 \\ 1 & 5\end{array}\right) \times\left(\begin{array}{ll}2 & 0 \\ 1 & 2\end{array}\right) \quad \Rightarrow B C=\left(\begin{array}{ll}8+0 & 0+0 \\ 2+5 & 0+10\end{array}\right) \quad \Rightarrow B C=\left(\begin{array}{cc}8 & 0 \\ 7 & 10\end{array}\right)$
$A C-B C=\left(\begin{array}{ll}4 & 4 \\ 5 & 6\end{array}\right)-\left(\begin{array}{cc}8 & 0 \\ 7 & 10\end{array}\right) \Rightarrow A C-B C=\left(\begin{array}{ll}4 & 4 \\ 5 & 6\end{array}\right)+\left(\begin{array}{rr}-8 & 0 \\ -7 & -10\end{array}\right)$
$A C-B C=\left(\begin{array}{cc}4-8 & 4+0 \\ 5-7 & 6-10\end{array}\right) \Rightarrow A C-B C=\left(\begin{array}{cc}-4 & 4 \\ -2 & -4\end{array}\right)$
From (1) and (2) LHS = RHS
(iii) $(A-B)^{T}=A^{T}-B^{T}$

Answer:
LHS $=(A-B)^{\top}$
$A-B=\left(\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right)-\left(\begin{array}{ll}4 & 0 \\ 1 & 5\end{array}\right) \quad \Rightarrow A-B=\left(\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right)+\left(\begin{array}{rr}-4 & 0 \\ -1 & -5\end{array}\right) \quad \Rightarrow A-B=\left(\begin{array}{ll}1-4 & 2+0 \\ 1-1 & 3-5\end{array}\right)$
$A-B=\left(\begin{array}{rr}-3 & 2 \\ 0 & -2\end{array}\right)$
$(A-B)^{T}=\left(\begin{array}{rr}-3 & 0 \\ 2 & -2\end{array}\right)$
$A^{T}=\left(\begin{array}{ll}1 & 1 \\ 2 & 3\end{array}\right) \quad \Rightarrow B^{T}=\left(\begin{array}{ll}4 & 1 \\ 0 & 5\end{array}\right)$
$A^{T}-B^{T}=\left(\begin{array}{ll}1 & 1 \\ 2 & 3\end{array}\right)-\left(\begin{array}{ll}4 & 1 \\ 0 & 5\end{array}\right) \Rightarrow A^{T}-B^{T}=\left(\begin{array}{ll}1 & 1 \\ 2 & 3\end{array}\right)+\left(\begin{array}{rr}-4 & -1 \\ 0 & -5\end{array}\right) \Rightarrow A^{T}-B^{T}=\left(\begin{array}{ll}1-4 & 1-1 \\ 2+0 & 3-5\end{array}\right)$
$A^{T}-B^{T}=\left(\begin{array}{rr}-3 & 0 \\ 2 & -2\end{array}\right)$
From (1) and (2) LHS = RHS
40. If $A=\left(\begin{array}{cc}\cos \theta & 0 \\ 0 & \cos \theta\end{array}\right), B=\left(\begin{array}{cc}\sin \theta & 0 \\ 0 & \sin \theta\end{array}\right)$ Then show that $A^{2}+B^{2}=I$

Answer:

$A^{2}=\left(\begin{array}{cc}\cos \theta & 0 \\ 0 & \cos \theta\end{array}\right) \times\left(\begin{array}{cc}\cos \theta & 0 \\ 0 & \cos \theta\end{array}\right) \quad \Rightarrow A^{2}=\left(\begin{array}{cc}\cos ^{2} \theta+0 & 0+0 \\ 0+0 & 0+\cos ^{2} \theta\end{array}\right)$
$A^{2}=\left(\begin{array}{cc}\cos ^{2} \theta & 0 \\ 0 & \cos ^{2} \theta\end{array}\right)$
$B^{2}=\left(\begin{array}{cc}\sin \theta & 0 \\ 0 & \sin \theta\end{array}\right) \times\left(\begin{array}{cc}\sin \theta & 0 \\ 0 & \sin \theta\end{array}\right) \quad \Rightarrow B^{2}=\left(\begin{array}{cc}\sin ^{2} \theta+0 & 0+0 \\ 0+0 & 0+\sin ^{2} \theta\end{array}\right)$
$B^{2}=\left(\begin{array}{cc}\sin ^{2} \theta & 0 \\ 0 & \sin ^{2} \theta\end{array}\right)$
$A^{2}+B^{2}=\left(\begin{array}{cc}\cos ^{2} \theta & 0 \\ 0 & \cos ^{2} \theta\end{array}\right)+=\left(\begin{array}{cc}\sin ^{2} \theta & 0 \\ 0 & \sin ^{2} \theta\end{array}\right) \quad \Rightarrow\left(\begin{array}{cc}\cos ^{2} \theta+\sin ^{2} \theta & 0 \\ 0 & \cos ^{2} \theta+\sin ^{2} \theta\end{array}\right)$
$A^{2}+B^{2}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \quad \Rightarrow A^{2}+B^{2}=I \quad\left(\sin ^{2} \theta+\cos ^{2} \theta=1\right)$
41. If $A=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$ prove that $A A^{T}=I$

Answer:

$A=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right) \quad \Rightarrow A^{T}=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$
$A A^{T}=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right) \times\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$
$A A^{T}=\left(\begin{array}{cc}\cos ^{2} \theta+\sin ^{2} \theta & -\cos \theta \sin \theta+\sin \theta \cos \theta \\ \sin \theta & \sin ^{2} \theta+\cos ^{2} \theta\end{array}\right) \Rightarrow A A^{T}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \quad \Rightarrow A \boldsymbol{A}^{T}=\boldsymbol{I}$
42. Verify $A^{2}=I \quad$ when $A=\left(\begin{array}{ll}5 & -4 \\ 6 & -5\end{array}\right)$

Answer:

$A^{2}=\left(\begin{array}{ll}5 & -4 \\ 6 & -5\end{array}\right) \times\left(\begin{array}{ll}5 & -4 \\ 6 & -5\end{array}\right) \quad \Rightarrow A^{2}=\left(\begin{array}{ll}25-24 & -20+20 \\ 30-30 & -24+25\end{array}\right) \quad \Rightarrow A^{2}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
$A^{2}=I$
43. If $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ show that $A^{2}-(a+d) A=(b c-a d) I_{2}$

Answer:

LHS $=A^{2}-(a+d) A$
$A^{2}=A \times A \quad \Rightarrow\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \times\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \quad \Rightarrow A^{2}=\left(\begin{array}{ll}a^{2}+b c & a b+b d \\ a c+c d & b c+d^{2}\end{array}\right)$
$(a+d) A=(a+d) \times\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$
$\Rightarrow(a+d) A=\left(\begin{array}{ll}a^{2}+a d & a b+b d \\ a c+c d & a d+d^{2}\end{array}\right)$
From (1) and (2) we get,
$A^{2}-(a+d) A=\left(\begin{array}{ll}a^{2}+b c & a b+b d \\ a c+c d & b c+d^{2}\end{array}\right)-\left(\begin{array}{ll}a^{2}+a d & a b+b d \\ a c+c d & a d+d^{2}\end{array}\right)$

$$
\begin{aligned}
& =\left(\begin{array}{cc}
a^{2}+b c & a b+b d \\
a c+c d & b c+d^{2}
\end{array}\right)+\left(\begin{array}{cc}
-a^{2}-a d & -a b-b d \\
-a c-c d & -a d-d^{2}
\end{array}\right) \\
& =\left(\begin{array}{cc}
a^{2}+b c-a^{2}-a d & a b+b d-a b-b d \\
a c+c d-a c-c d & b c+d^{2}-a d-d^{2}
\end{array}\right) \\
& =\left(\begin{array}{cc}
b c-a d & 0 \\
0 & b c-a d
\end{array}\right) \\
& =(b c-a d)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& =(b c-a d) I_{2}
\end{aligned}
$$

Therefore LHS = RHS

44. If $A=\left(\begin{array}{lll}5 & 2 & 9 \\ 1 & 2 & 8\end{array}\right)$, and $B=\left(\begin{array}{rr}1 & 7 \\ 1 & 2 \\ 5 & -1\end{array}\right)$ then show that $(A B)^{T}=B^{T} A^{T}$

Answer:

$L H S=(A B)^{T}$
$A B=\left(\begin{array}{lll}5 & 2 & 9 \\ 1 & 2 & 8\end{array}\right) \times\left(\begin{array}{rr}1 & 7 \\ 1 & 2 \\ 5 & -1\end{array}\right) \quad \Rightarrow A B=\left(\begin{array}{cc}5+2+45 & 35+4-9 \\ 1+2+40 & 7+4-8\end{array}\right) \Rightarrow A B=\left(\begin{array}{cc}52 & 30 \\ 43 & 3\end{array}\right)$
$(A B)^{T}=\left(\begin{array}{cc}52 & 43 \\ 30 & 3\end{array}\right)$
$R H S=B^{T} A^{T}$
$B^{T}=\left(\begin{array}{rrr}1 & 1 & 5 \\ 7 & 2 & -1\end{array}\right) \quad \Rightarrow A^{T}=\left(\begin{array}{ll}5 & 1 \\ 2 & 2 \\ 9 & 8\end{array}\right)$
$B^{\top} A^{T}=\left(\begin{array}{llr}1 & 1 & 5 \\ 7 & 2 & -1\end{array}\right) \times\left(\begin{array}{ll}5 & 1 \\ 2 & 2 \\ 9 & 8\end{array}\right) \quad \Rightarrow B^{T} A^{T}=\left(\begin{array}{cc}5+2+45 & 1+2+40 \\ 35+4-9 & 7+4-8\end{array}\right)$
$B^{\top} A^{T}=\left(\begin{array}{cc}52 & 43 \\ 30 & 3\end{array}\right)$
From (1) and (2) LHS = RHS
45. If $A=\left(\begin{array}{rr}3 & 1 \\ -1 & 2\end{array}\right)$ show that $A^{2}-5 A+7 I_{2}=0$

Answer:

$A^{2}=A \times A \quad \Rightarrow A^{2}=\left(\begin{array}{rr}3 & 1 \\ -1 & 2\end{array}\right) \times\left(\begin{array}{rr}3 & 1 \\ -1 & 2\end{array}\right) \Rightarrow A^{2}=\left(\begin{array}{rr}9-1 & 3+2 \\ -3-2 & -1+4\end{array}\right) \Rightarrow A^{2}=\left(\begin{array}{rr}8 & 5 \\ -5 & 3\end{array}\right)$ $5 A=5\left(\begin{array}{rr}3 & 1 \\ -1 & 2\end{array}\right) \quad \Rightarrow 5 A=\left(\begin{array}{cc}15 & 5 \\ -5 & 10\end{array}\right)$
$7 I_{2}=7\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \quad \Rightarrow 7 I_{2}=\left(\begin{array}{ll}7 & 0 \\ 0 & 7\end{array}\right)$
$A^{2}-5 A+7 I_{2}=\left(\begin{array}{rr}8 & 5 \\ -5 & 3\end{array}\right)-\left(\begin{array}{cc}15 & 5 \\ -5 & 10\end{array}\right)+\left(\begin{array}{ll}7 & 0 \\ 0 & 7\end{array}\right)$
$A^{2}-5 A+7 I_{2}=\left(\begin{array}{rr}8 & 5 \\ -5 & 3\end{array}\right)+\left(\begin{array}{cc}-15 & -5 \\ 5 & -10\end{array}\right)+\left(\begin{array}{ll}7 & 0 \\ 0 & 7\end{array}\right)$
$A^{2}-5 A+7 I_{2}=\left(\begin{array}{cc}8-15+7 & 5-5+0 \\ -5+5+0 & 3-10+7\end{array}\right)$
$A^{2}-5 A+7 I_{2}=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right) \quad \Rightarrow A^{2}-5 A+7 I_{2}=0$
46. If $A=\left(\begin{array}{lll}1 & -1 & 2\end{array}\right), B=\left(\begin{array}{cc}1 & -1 \\ 2 & 1 \\ 1 & 3\end{array}\right)$ and $C=\left(\begin{array}{rr}1 & 2 \\ 2 & -1\end{array}\right) \quad$ Show that $(A B) C=A(B C)$

Answer:

$L H S=(A B) C$
$A B=\left(\begin{array}{ll}1 & -1\end{array}\right.$
2) $x\left(\begin{array}{cc}1 & -1 \\ 2 & 1 \\ 1 & 3\end{array}\right) \Rightarrow A B=(1-2+2-1-1+6) \Rightarrow A B=(1$
$(A B) C=(1$
4) $\times\left(\begin{array}{rr}1 & 2 \\ 2 & -1\end{array}\right)$
$\Rightarrow(A B) C=\left(\begin{array}{ll}1+8 & 2-4\end{array}\right)$
$\Rightarrow(A B) C=\left(\begin{array}{ll}9 & -2\end{array}\right)$
4)
$R H S=A(B C)$
$B C=\left(\begin{array}{cc}1 & -1 \\ 2 & 1 \\ 1 & 3\end{array}\right) \times\left(\begin{array}{rr}1 & 2 \\ 2 & -1\end{array}\right) \quad \Rightarrow B C=\left(\begin{array}{ll}1-2 & 2+1 \\ 2+2 & 4-1 \\ 1+6 & 2-3\end{array}\right) \quad \Rightarrow B C=\left(\begin{array}{rr}-1 & 3 \\ 4 & 3 \\ 7 & -1\end{array}\right)$
$A(B C)=\left(\begin{array}{lll}1 & -1 & 2\end{array}\right) \times\left(\begin{array}{rr}-1 & 3 \\ 4 & 3 \\ 7 & -1\end{array}\right) \Rightarrow A(B C)=\left(\begin{array}{ll}-1-4+14 & 3-3-2\end{array}\right)$
$\Rightarrow A(B C)=\left(\begin{array}{ll}9 & -2\end{array}\right)$
From (1) and (2) LHS = RHS

SQUARE ROOT

1. Find the square root of the following expressions
(i) $256(x-a)^{8}(x-b)^{4}(x-c)^{16}(x-d)^{20}$
(ii) $\frac{144 a^{8} b^{12} c^{16}}{81 f^{12} g^{4} h^{14}}$

Answer:
(i) $256(x-a)^{8}(x-b)^{4}(x-c)^{16}(x-d)^{20}$

Answer:
$\sqrt{256(x-a)^{8}(x-b)^{4}(x-c)^{16}(x-d)^{20}} \quad=16\left|(x-a)^{4}(x-b)^{2}(x-c)^{8}(x-d)^{10}\right|$
(ii) $\frac{144 a^{8} b^{12} c^{16}}{81 f^{12} g^{4} h^{14}}$

Answer:

$$
\sqrt{\frac{144 a^{8} b^{12} c^{16}}{81 f^{12} g^{4} h^{14}}}=\frac{12}{9}\left|\frac{a^{4} b^{6} c^{8}}{f^{6} g^{2} h^{7}}\right| \quad=\frac{4}{3}\left|\frac{a^{4} b^{6} c^{8}}{f^{6} g^{2} h^{7}}\right|
$$

2. Find the square root of the following expressions.

Answer:

Answer:

$$
\begin{aligned}
\sqrt{16 x^{2}+9 y^{2}-24 x y+24 x-18 y+9} & =\sqrt{(4 x)^{2}+(-3 y)^{2}+(3)^{2}+2(4 x)(-3 y)+2(-3 y)(3)+2(4 x)(3)} \\
& =\sqrt{(4 x-3 y+3)^{2}} \\
& =|\mathbf{4 x}-\mathbf{3 y}+\mathbf{3}|
\end{aligned}
$$

$$
\text { (ii) }\left(6 x^{2}+x-1\right)\left(3 x^{2}+2 x-1\right)\left(2 x^{2}+3 x+1\right)
$$

Answer:

$$
\begin{aligned}
\sqrt{\left(6 x^{2}+x-1\right)\left(3 x^{2}+2 x-1\right)\left(2 x^{2}+3 x+1\right)} & =\sqrt{(3 x-1)(2 x+1)(3 x-1)(x+1)(2 x+1)(x+1)} \\
& =\sqrt{(3 x-1)^{2}(2 x+1)^{2}(x+1)^{2}} \\
& =|(3 x-1)(2 x+1)(x+1)|
\end{aligned}
$$

(iii) $\left[\sqrt{15} x^{2}+(\sqrt{3}+\sqrt{10}) x+\sqrt{2}\right]\left[\sqrt{5} x^{2}+(2 \sqrt{5}+1) x+2\right]\left[\sqrt{3} x^{2}+(\sqrt{2}+2 \sqrt{3}) x+2 \sqrt{2}\right]$

Answer:

$$
\begin{aligned}
& \sqrt{15} x^{2}+(\sqrt{3}+\sqrt{10}) x+\sqrt{2}=\sqrt{15} x^{2}+\sqrt{3} x+\sqrt{10} x+\sqrt{2} \\
&=\sqrt{3} x(\sqrt{5} x+1)+\sqrt{2}(\sqrt{5} x+1) \\
&=(\sqrt{5} x+1)(\sqrt{3} x+\sqrt{2}) \\
&=\sqrt{5} x^{2}+2 \sqrt{5} x+x+2 \\
&=\sqrt{5} x(x+2)+1(x+2) \\
&=(x+2)(\sqrt{5} x+1) \\
&\left.\sqrt{3} x^{2}+(2 \sqrt{5}+1) x+2 \sqrt{2}+2 \sqrt{3}\right) x+2 \sqrt{2}=\sqrt{3} x^{2}+\sqrt{2} x+2 \sqrt{3} x+2 \sqrt{2} \\
&=x(\sqrt{3} x+\sqrt{2})+2(\sqrt{3} x+\sqrt{2}) \\
&=(x+2)(\sqrt{3} x+\sqrt{2}) \\
&\left.\sqrt{\left[\sqrt{15} x^{2}+(\sqrt{3}+\sqrt{10}) x+\right.} \sqrt{2}\right]\left[\sqrt{5} x^{2}+(2 \sqrt{5}+1) x+2\right]\left[\sqrt{3} x^{2}+(\sqrt{2}+2 \sqrt{3}) x+2 \sqrt{2}\right]
\end{aligned}
$$

$=\sqrt{(\sqrt{5} x+1)(\sqrt{3} x+\sqrt{2})(x+2)(\sqrt{5} x+1)(x+2)(\sqrt{3} x+\sqrt{2})}$
$=\sqrt{(\sqrt{5} x+1)^{2}((\sqrt{3} x+\sqrt{2}))^{2}(x+2)^{2}}$
$=|(\sqrt{5} x+1)(\sqrt{3} x+\sqrt{2})(x+2)|$
3. Find the square root of the following rational expressions.
(i) $\frac{400 x^{4} y^{12} c^{16}}{100 x^{8} y^{4} z^{4}}$
(ii) $\frac{7 x^{2}+2 \sqrt{14} x+2}{x^{2}-\frac{1}{2} x+\frac{1}{16}}$
(iii) $\frac{121(a+b)^{8}(x+y)^{8}(b-c)^{8}}{81(b-c)^{4}(a-b)^{12}(b-c)^{4}}$

Answer:

(i) $\frac{400 x^{4} y^{12} c^{16}}{100 x^{8} y^{4} z^{4}}$

Answer
$\sqrt{\frac{400 x^{4} y^{12} c^{16}}{100 x^{8} y^{4} z^{4}}} \quad=\frac{20\left|x^{2} y^{6} z^{8}\right|}{10\left|x^{4} y^{2} z^{2}\right|} \quad=2\left|\frac{y^{4} z^{6}}{x^{2}}\right|$
(ii) $\frac{7 x^{2}+2 \sqrt{14} x+2}{x^{2}-\frac{1}{2} x+\frac{1}{16}}$

Answer:

$$
\begin{aligned}
\sqrt{\frac{7 x^{2}+2 \sqrt{14} x+2}{x^{2}-\frac{1}{2} x+\frac{1}{16}}} & =\sqrt{\frac{(\sqrt{7} x+2)(\sqrt{7} x+2)}{\left(x-\frac{1}{4}\right)\left(x-\frac{1}{4}\right)}} \\
& =\frac{(\sqrt{7} x+2)}{\left(x-\frac{1}{4}\right)}=\frac{(\sqrt{7} x+2)}{\frac{4 x-1}{4}} \\
& =4\left|\frac{(\sqrt{7} x+2)}{(4 x-1)}\right|
\end{aligned}
$$

(iii) $\frac{121(a+b)^{8}(x+y)^{8}(b-c)^{8}}{81(b-c)^{4}(a-b)^{12}(b-c)^{4}}$

Answer:

$$
\begin{aligned}
\sqrt{\frac{121(a+b)^{8}(x+y)^{8}(b-c)^{8}}{81(b-c)^{4}(a-b)^{12}(b-c)^{4}}} & =\left|\frac{11(a+b)^{4}(x+y)^{4}(b-c)^{4}}{9(b-c)^{2}(a-b)^{6}(b-c)^{2}}\right| \\
& =\frac{11}{9}\left|\frac{(a+b)^{4}(x+y)^{4}}{(a-b)^{6}}\right|
\end{aligned}
$$

4. Find the square root of the following:
(i) $4 x^{2}+20 x+25$
(ii) $9 x^{2}-24 x y+30 x z-40 y z+25 z^{2}+16 y^{2}$
(iii) $1+\frac{1}{x^{6}}+\frac{2}{x^{3}}$
(iv) $\left(4 x^{2}-9 x+2\right)\left(7 x^{2}-13 x-2\right)\left(28 x^{2}-3 x-1\right)$
(v) $\left(2 x^{2}+\frac{17}{6} x+1\right)\left(\frac{3}{2} x^{2}+4 x+2\right)\left(\frac{4}{3} x^{2}+\frac{11}{3} x+2\right)$

Answer:

(i) $4 x^{2}+20 x+25$

$$
\sqrt{4 x^{2}+20 x+25}=\sqrt{(2 x+5)^{2}} \quad=|2 x+5|
$$

(ii) $9 x^{2}-24 x y+30 x z-40 y z+25 z^{2}+16 y^{2}$

$$
\begin{aligned}
\sqrt{9 x^{2}+16 y^{2}}+ & 25 z^{2}-24 x y+30 x z-40 y z \\
& =\sqrt{(3 x)^{2}+(-4 y)^{2}+(5 z)^{2}+2(4 x)(-3 y)+2(-4 y)(5 z)+2(5 z)(3 x)} \\
& =\sqrt{(3 x-4 y+5 z)^{2}} \\
& =|3 x-4 y+5 z|
\end{aligned}
$$

(iii) $1+\frac{1}{x^{6}}+\frac{2}{x^{3}}$

$$
\begin{aligned}
\sqrt{+\frac{1}{x^{6}}+\frac{2}{x^{3}}} & =\sqrt{1^{2}+2(1)\left(\frac{1}{x^{3}}\right)+\left(\frac{1}{x^{3}}\right)^{2}} \\
& =\sqrt{\left(1+\frac{1}{x^{3}}\right)^{2}} \quad=\left|1+\frac{1}{x^{3}}\right|
\end{aligned}
$$

(iv) $\left(4 x^{2}-9 x+2\right)\left(7 x^{2}-13 x-2\right)\left(28 x^{2}-3 x-1\right)$

$$
\begin{aligned}
& \sqrt{\left(4 x^{2}-9 x+2\right)\left(7 x^{2}-13 x-2\right)\left(28 x^{2}-3 x-1\right)} \\
&=\sqrt{(x-2)(4 x-1)(x-2)(7 x+1)(4 x-1)(7 x+1)} \\
&=\sqrt{(x-2)^{2}(4 x-1)^{2}(7 x+1)^{2}} \\
&=|(x-2)(4 x-1)(7 x+1)|
\end{aligned}
$$

(v) $\quad\left(2 x^{2}+\frac{17}{6} x+1\right)\left(\frac{3}{2} x^{2}+4 x+2\right)\left(\frac{4}{3} x^{2}+\frac{11}{3} x+2\right)$

$$
\begin{aligned}
\sqrt{\left(2 x^{2}\right.}+ & \left.+\frac{17}{6} x+1\right)\left(\frac{3}{2} x^{2}+4 x+2\right)\left(\frac{4}{3} x^{2}+\frac{11}{3} x+2\right) \\
& =\sqrt{\left(\frac{12 x^{2}+17 x+6}{6}\right)\left(\frac{3 x^{2}+8 x+4}{2}\right)\left(\frac{4 x^{2}+11 x+6}{3}\right)} \\
& =\frac{1}{6} \sqrt{\left(12 x^{2}+17 x+6\right)\left(3 x^{2}+8 x+4\right)\left(4 x^{2}+11 x+6\right)} \\
& =\frac{1}{6} \sqrt{(4 x+3)(3 x+2)(x+2)(3 x+2)(4 x+3)(x+2)} \\
& =\frac{1}{6} \sqrt{(4 x+3)^{2}(3 x+2)^{2}(x+2)^{2}} \\
& =\frac{1}{6} /(4 x+3)(3 x+2)(x+2) /
\end{aligned}
$$

5. Find the square root of the following polynomials by division method.
(i) $x^{4}-12 x^{3}+42 x^{2}-36 x+9$

$$
\sqrt{x^{4}-12 x^{3}+42 x^{2}-36 x+9}=\left|x^{2}-6 x+3\right|
$$

(iii) $16 x^{4}+8 x^{2}+1$
$8 x^{2}-0 x+1$

$4 x^{2}-0 x+1$	
$1 \neq x^{4}-0 x^{3}+8 x^{2}+0 x+1$	(-)
$\begin{aligned} & -\phi x^{3}+8 x^{2} \\ & -0 x^{3}+0 x^{2} \end{aligned}$	(-)
$\begin{aligned} & +8 x^{2}+\phi x+1 \\ & +8 x^{2}-0 x+1 \end{aligned}$	
0	

$$
\sqrt{16 x^{4}-0 x^{3}+8 x^{2}+0 x+1}=\left|4 x^{2}-0 x+1\right|
$$

(ii) $37 x^{2}-28 x^{3}+4 x^{4}+42 x+9$

$$
\sqrt{4 x^{4}-28 x^{3}+37 x^{2}+42 x+9}=\left|2 x^{2}-7 x-3\right|
$$

(iv) $121 x^{4}-198 x^{3}-183 x^{2}+216 x+144$

$$
\sqrt{121 x^{4}-198 x^{3}-183 x^{2}-216 x+144}=\left|11 x^{2}-9 x-12\right|
$$

6. Find the values of ' a ' and ' b ' if the following polymnomials are perfect squares.
(i) $4 x^{4}-12 x^{3}+36 x^{2}+b x+a$
$4 x^{2}-6 x+7$

$2 x^{2}-3 x+7$	
$4 x^{4}-12 x^{3}+36 x^{2}+b x+a$	$(-)$
$-12 x^{3}+36 x^{2}$ $-12 x^{3}+9 x^{2}$	$(-)$
$28 x^{2}+b x+a$ $28 x^{2}-42 x+49$	$(-)$
0	

$$
a=49 \text { and } b=-42
$$

(iii) $x^{4}-8 x^{3}+a x^{2}+b x+16$

$$
x^{2}-4 x+4
$$

$x^{2} \quad x^{4} /-8 x^{3}+a x^{2}+b x+16$
$2 x^{2}-4 x$

$$
\begin{align*}
& -8 x^{3} /+a x^{2} \tag{-}\\
& -8 x^{3}+16 x^{2} \\
& \hline a x^{2}-16 x^{2}+b x+16 \\
& 8 x^{2}-32 x+16 \\
& \hline
\end{align*}
$$

0

$$
a-16=8 \quad \Rightarrow a=8+16
$$

$$
\Rightarrow a=24 \text { and } b=-32
$$

(ii) $a x^{4}+b x^{3}+361 x^{2}+220 x+100$

	$10+11 x+12 x^{2}$
10	$\begin{aligned} & 10 \emptyset+220 x+361 x^{2}+b x^{3}+a x^{4} \\ & 1,00 \end{aligned}$
$20+11 x$	$\begin{aligned} & +220 \alpha x+361 x^{2} \\ & 220 x+121 x^{2} \end{aligned}$
$20+22 x+12 x^{2}$	$\begin{aligned} & 240 x^{2}+b x^{3}+a x^{4} \\ & 240 x^{2}+264 x^{3}+144 x^{4} \end{aligned}$
	0
$a=144$	d $\mathrm{l}=264$

(iv) $\frac{1}{x^{4}}-\frac{6}{x^{3}}+\frac{13}{x^{2}}+\frac{a}{x}+b$

$$
\frac{1}{x^{2}}-\frac{3}{x}+2
$$

$$
\begin{equation*}
\frac{1}{x^{2}} \frac{1}{x^{4}}-\frac{6}{x^{4}}+\frac{13}{x^{2}}+\frac{a}{x}+b \tag{-}
\end{equation*}
$$

$$
\begin{equation*}
\frac{2}{x^{2}}-\frac{6}{x}+2 \tag{-}
\end{equation*}
$$

PROBABILITY

1. Express the sample space for rolling two dice using tree diagram.

$\{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)$
$(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)$

$(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)$
$(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)$

$(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)$

$(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\}$
$n(S)=36$
2. A bag contains 5 blue balls and 4 green balls. A ball is drawn at random from the bag. Find the probability that the ball drawn is (i) blue (ii) not blue.

Answer:

Total number of possible outcomes (sample space) $\Rightarrow n(S)=5+4=9$
(i) Let A be the event of getting a blue ball

Number of blue balls $=5 \quad \Rightarrow n(A)=5$
Probability that the ball drawn is blue. Therefore

$$
P(A)=\frac{n(A)}{n(S)} \quad=\frac{5}{9}
$$

(ii) Let B will be the event of not getting a blue ball
$n(S)=4$ (other than blue ball)
$P(B)=\frac{n(B)}{n(S)} \quad=\frac{4}{9}$
3. Two dice are rolled. Find the probability that sum of outcomes is (i) equal to 4, (ii) greater than 10, (iii) less than 13
Answer:
$S=\{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)$

$$
\begin{aligned}
& (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) \\
& (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) \\
& (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) \\
& (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) \\
& (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\} \quad \Rightarrow n(S)=36
\end{aligned}
$$

(i) Let A be the event of getting the sum of outcome values equal to 4

$$
\begin{aligned}
& A=\{(1,3),(2,2),(3,1)\} \quad \Rightarrow n(A)=3 \\
& P(A)=\frac{n(A)}{n(S)}=\frac{3}{36}=\frac{1}{12}
\end{aligned}
$$

(ii) Let B be the event of getting the sum of outcome values greater than 10

$$
\begin{aligned}
& B=\{(5,6),(6,5),(6,6)\} \quad \Rightarrow n(B)=3 \\
& P(B)=\frac{n(B)}{n(S)}=\frac{3}{36}=\frac{1}{12}
\end{aligned}
$$

(iii) Let C be the event op getting the sum of outcomes less than 13 .

$$
\begin{array}{ll}
n(C)=n(S) & \Rightarrow n(C)=36 \\
P(C)=\frac{n(C)}{n(S)} \quad=\frac{36}{36} \quad=1
\end{array}
$$

4. Two coins are tossed together. What is the probability of getting different faces of the coins ?

Answer:
When two coins are tossed together, the sample space is

$$
S=\{H H, H T, T H, T T\} \quad \Rightarrow n(S)=4
$$

Let A be the event of getting different faces on the coins

$$
\begin{aligned}
& A=\{H T, T H\} \\
& P(A)=\frac{n(A)}{n(S)} \quad=\frac{2}{4} \quad=\frac{1}{2}
\end{aligned} \quad \Rightarrow n(A)=2
$$

5. From a well shuffled a pack of 52 cards, one card is drawn at random. Find the probability of getting (i) red card (ii) heart card (iii) red king (iv) face card (v) number card.
Answer:

$$
n(S)=52
$$

(i) Let A be the event of getting a red card

$$
\begin{array}{lll}
n(A)=13+13 & \Rightarrow n(A)=26 \\
P(A)=\frac{n(A)}{n(S)} & =\frac{26}{52} & =\frac{1}{2}
\end{array}
$$

(ii) Let B be the event of getting a heart card,

$$
\begin{aligned}
& n(B)=13 \\
& P(B)=\frac{n(B)}{n(S)} \quad=\frac{13}{52} \quad=\frac{1}{4}
\end{aligned}
$$

(iii) Let C be the event of getting a red king

$$
\begin{array}{ll}
n(C)=1+1 & \Rightarrow n(C)=2 \\
P(C)=\frac{n(C)}{n(S)} \quad=\frac{2}{52} & =\frac{1}{26}
\end{array}
$$

(iv) Let D be the event of getting a face card. The face cards are Jack(J), Queen (Q) and King (K)

$$
\begin{array}{ll}
n(D)=3+3+3+3 & \Rightarrow n(D)=12 \\
P(D)=\frac{n(D)}{n(S)} \quad=\frac{12}{52} & =\frac{3}{13}
\end{array}
$$

(v) Let E be the event of getting a number card. The number cards are 2, 3, 4, 5, 6, 7, 8, 9, 10.

$$
\begin{array}{ll}
n(E)=9+9+9+9 & \Rightarrow n(E)=36 \\
P(E)=\frac{n(E)}{n(S)} \quad=\frac{36}{52} & =\frac{9}{13}
\end{array}
$$

6. What is the probability that leap year selected are random will contain 53 Saturdays.
(Hint $366=52 \times 7+2$)

Answer:

A leap year has 366 days. So it has 52 full weeks and 2 days. 52 Saturdays must be in 52 full weeks.

The possible chances for the remaining two days will be the sample space.
S

$$
\begin{aligned}
& =\{(\text { sun, Mon), (Mon, Tue), (Tue, Wed), (Wed, Thu), (Thu, Fri), (Fri, Sat), (Sat, Sun) }\} \\
& \quad \Rightarrow n(S) \quad=\mathbf{7}
\end{aligned}
$$

Let A be the event of getting 53 Saturdays in a leap year

$$
\begin{aligned}
A=\{(\text { Fri, Sat }),(\text { Sat, Sun })\} & \Rightarrow n(A)=2 \\
& \Rightarrow P(A)=\frac{n(A)}{n(S)}=\frac{2}{7}
\end{aligned}
$$

7. A die is rolled and a coin is tossed simultaneously. Find the probability that the die shows and odd number and the coin shows a head.
Answer:

$$
S=\{1 H, 1 T, 2 H, 2 T, 3 H, 3 T, 4 H, 4 T, 5 H, 5 T, 6 H, 6 T\} \quad \Rightarrow n(S)=12
$$

Let A be the event of getting an odd number and a head

$$
\begin{array}{ll}
A=\{1 H, 3 H, 5 H\} & \Rightarrow n(A)=3 \\
P(A)=\frac{n(A)}{n(S)} \quad=\frac{3}{12} & =\frac{1}{4}
\end{array}
$$

8. A bag contains 6 green balls, some black and red balls. Number of black balls is twice as the number of red balls. Probability of getting a green ball is thrice the probability of getting a red ball. Find (i) number of black balls (ii) total number of balls.

Answer:

Number of green balls is $n(G)=6$
Let the number of red balls is $n(R)=x$
Therefore, number of black balls is $n(B)=2 x$
Total number of balls $=6+x+2 x \quad \Rightarrow n(S)=6+3 x$

$$
\text { Given } \Rightarrow P(G)=3 P(R)
$$

$$
\begin{aligned}
P(G)=3 P(R) & \Rightarrow \frac{n(g)}{n(S)}=3 \frac{n(R)}{n(S)} \\
& \Rightarrow \frac{6}{6+3 x}=3 \frac{x}{6+3 x} \quad \Rightarrow 3 x=6 \quad \Rightarrow x=\frac{6}{3} \quad \Rightarrow x=2
\end{aligned}
$$

(i) Number of black balls $=2 x \quad \Rightarrow 2 \times 2=4$
(ii) Total number of balls $=n(G)+n(R)+n(B) \quad \Rightarrow 6+2+4$

Total number of balls $\quad \Rightarrow n(S)=12$
9. A game of chance consists of spinning an arrow which is equally likely to come to rest pointing to one of the numbers 1, 2, 3, 4, 12. What is the probability that it will point to
(i) 7
(ii) a prime number
(iii) a composite number ?

Answer:

Sample space $(S)=\{1,2,3,4,5,6,7,8,9,10,11,12\} \quad \Rightarrow n(S)=12$
(i) Let A be the event that arrow will come to rest in 7

$$
\begin{array}{ll}
A=\{7\} & \Rightarrow n(A)=1 \\
P(A)=\frac{n(A)}{n(S)} & =\frac{1}{12}
\end{array}
$$

(ii) Let B be the event that arrow will come to rest in a prime number

$$
B=\{2,3,5,7,11\} \quad \Rightarrow n(B)=5
$$

$$
P(B)=\frac{n(B)}{n(S)} \quad=\frac{5}{12}
$$

(iii) Let C be the event that arrow ill come to rest in a composite number

$$
\begin{aligned}
& C=\{4,6,8,9,10,12\} \quad \Rightarrow n(C)=6 \\
& P(C)=\frac{n(C)}{n(S)}=\frac{6}{12}=\frac{1}{2}
\end{aligned}
$$

10. Write the sample space for tossing three coins using tree diagram.
11. Write the sample space for selecting two balls from a bag containing 6 balls numbered 1 to 6 . (using tree diagram).

Answer:

$$
\begin{aligned}
S= & \{(1,2),(1,3),(1,4),(1,5),(1,6) \\
& (2,1),(2,3),(2,4),(2,5),(2,6) \\
& (3,1),(3,2),(3,4),(3,5),(3,6) \\
& (4,1),(4,2),(4,3),(4,5),(4,6) \\
& (5,1),(5,2),(5,3),(5,4),(5,6) \\
& (6,1),(6,2),(6,3),(6,4),(6,5)\} \quad \Rightarrow n(S)=30
\end{aligned}
$$

12. If A is an event of random experiment such that $P(A): P(\bar{A})=17: 15$ and $n(S)=640$, Then find $P(\bar{A})$ and $n(A)$
Answer:
Given $P(A): P(\bar{A})=17: 15$

$$
\begin{array}{ll}
\Rightarrow \frac{P(A)}{P(\bar{A})}=\frac{17}{15} & \Rightarrow \frac{1-P(\bar{A})}{P(\bar{A})}=\frac{17}{15} \quad(P(A)+P(\bar{A})=1) \\
\Rightarrow 15(1-P(\bar{A})) \quad=17 P(\bar{A}) & \Rightarrow 15-15 P(\bar{A})=17 P(\bar{A}) \\
\Rightarrow 15=17 P(\bar{A})+15 P(\bar{A}) \quad \Rightarrow 15=32 P(\bar{A}) \\
\Rightarrow P(\bar{A})=\frac{15}{32} \quad(\text { therefore } n(\bar{A})=15) \\
\Rightarrow n(S)=32 \Rightarrow n(A)+n(\bar{A})=32 & \Rightarrow n(A)=32-n(\bar{A}) \quad \Rightarrow n(A)=32-15
\end{array}
$$

$$
\Rightarrow n(A)=17
$$

13. A coin is tossed thrice. What is the probability of getting two consecutive tails ?

Answer:
Sample Space (S) = \{ HHH, HHT, HTH, THH, TTT, TTH, THT, HTT \}

$$
n(S)=8
$$

Let $A=$ probability of getting two consecutive tails

$$
A=\{H T T, T T H, T T T\} \quad \Rightarrow n(A)=3 \quad \Rightarrow P(A)=\frac{n(A)}{n(S)}=\frac{3}{8}
$$

14. At a fete, cards bearing numbers 1 to 1000, one number on one card are put in a box. Each player selects one card at random and that card is not replaced. If the selected card has a perfect square number greater that 500, the player wins a prize. What is the probability that (i) the first player wins a prize (ii) the second player wins a prize, if the first has won?
Answer:

$$
n(S)=1000
$$

(i) Let A be the event of getting perfect squares between 500 and 1000
$A=\left\{23^{2}, 24^{2}, 25^{2}, 25^{2}, 26^{2}, 27^{2}, 28^{2}, 29^{2}, 30^{2}, 31^{2}\right\}$
$n(A)=9$
$P(A)=\frac{n(A)}{n(S)}=\frac{9}{1000}$
First players wins the prize $=\frac{9}{1000}$
(ii) When the card which was taken first is not replaced.

$$
\begin{aligned}
& n(S)=999 \\
& n(B)=8 \\
& P(B)=\frac{n(B)}{n(S)}=\frac{8}{999}
\end{aligned}
$$

15. A bag contains 12 blue balls and x red balls. If one ball is drawn at random (i) what is the probability that it will be a red ball?
(ii) if 8 more red balls put in the bag, and if the probability of drawing a red ball will be twice that of the probability in (i), then find x.
Answer:
Given $n(R)=x, n(B)=12$
Total number of balls in the bag $=x+12(x \rightarrow$ red, $12 \rightarrow$ black $)$
(i) Let A be the event of getting red balls

$$
P(A)=\frac{n(A)}{n(S)}=\frac{x}{x+12}
$$

(ii) If 8 more red balls are added in the bag $\Rightarrow n(S)=x+12+8 \quad \Rightarrow x+20$

By the given statement in question

$$
\begin{aligned}
& \Rightarrow \frac{x+8}{x+20} \quad=2\left(\frac{x}{x+12}\right) \\
& \Rightarrow(x+8)(x+12)=2 x(x+20) \\
& \Rightarrow x^{2} 20 x+96=2 x^{2}+40 x \\
& \Rightarrow-x^{2}-20 x+96=0 \\
& \Rightarrow(x+24)(x-4)=0 \\
& \Rightarrow \text { Therefore } x=4 \\
& \Rightarrow P(A)=\frac{n(A)}{n(S)} \quad=\frac{x}{x+12} \\
& \Rightarrow P(A)=\frac{\mathbf{1}}{4}
\end{aligned}
$$

$$
\Rightarrow \frac{x+8}{x+20}=\left(\frac{2 x}{x+12}\right)
$$

$$
\Rightarrow(x+8)(x+12)=2 x(x+20) \quad \Rightarrow x^{2}+12 x+8 x+96=2 x^{2}+40 x
$$

$$
\Rightarrow x^{2} 20 x+96=2 x^{2}+40 x \quad \Rightarrow x^{2}+20 x+96-2 x^{2}-40 x=0
$$

$$
\Rightarrow-x^{2}-20 x+96=0 \quad \Rightarrow x^{2}+20 x-96=0
$$

$$
\Rightarrow(x+24)(x-4)=0 \quad \Rightarrow x=24 \& 4 \text { (-ve negligible) }
$$

16. Two unbiased dice are rolled once. Find the probability of getting
(i) a doublet (equal numbers on both dice)
(ii) the product as a prime number
(iii) the sum as a prime number
(iv) the sum as 1
$S=\{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)$
$(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)$
$(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)$
$(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)$
$(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)$
$(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\} \quad \Rightarrow n(S)=36$
(i) Let A be the event of getting a doublet
$A=\{(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)\} \quad \Rightarrow n(A)=6$
$\Rightarrow P(A)=\frac{n(A)}{n(S)} \quad=\frac{6}{36} \quad \Rightarrow P(A)=\frac{1}{6}$
(ii) Let B the event of getting the product as a prime number

$$
B=\{(1,2),(1,3),(1,5),(2,1),(3,1),(5,1)\} \quad \Rightarrow n(B)=6
$$

$\Rightarrow P(A)=\frac{n(B)}{n(S)}=\frac{6}{36}$

$$
\Rightarrow P(A)=\frac{1}{6}
$$

(iii) Let C be the event of getting the sum of numbers on the dice is prime

$$
\begin{aligned}
& C=\{(1,1),(1,2),(1,4),(1,6),(2,1),(2,3),(2,5),(3,2),(3,4),(4,1),(4,3),(5,2),(5,6),(6,1),(6,5)\} \\
& \Rightarrow P(C)=\frac{n(C)}{n(S)}=\frac{15}{36} \quad P(C)=\frac{5}{12}
\end{aligned}
$$

(iv) With two dice, minimum sum possible $=2$

Therefore probability (sum as 1) $=0$
17. Three fair coins are tossed together. Find the probability of getting
(i) all heads (ii) atleast one tail (iii) atmost one head (iv) atmost two tails.

Answer:
Sample Space (S) $=\{$ HHH, HHT, HTH, THH, TTT, TTH, THT, HTT \}

$$
n(S)=8
$$

(i) Let A be the event of getting all heads.

$$
\begin{array}{ll}
A=\{H H H\} & \Rightarrow n(A)=1 \\
\Rightarrow P(A)=\frac{n(A)}{n(S)} \quad=\frac{1}{8}
\end{array}
$$

(ii) Let B be the event of getting atleast one tail

$$
B=\{H H T, H T H, T H H, T T T, T T H, T H T, H T T\} \quad \Rightarrow n(B)=7
$$

$$
\Rightarrow P(B)=\frac{n(B)}{n(S)} \quad=\frac{7}{8}
$$

(iii) Let C be the event of getting atmost one head.

$$
\begin{array}{ll}
C=\{T T T, T T H, T H T, H T T\} \\
P(C)=\frac{n(C)}{n(S)}=\frac{4}{8}=\frac{1}{2} & \Rightarrow n(C)=4 \\
\end{array}
$$

(iv) Let D be the event of getting atmost two tails.
$D=\{H H H, H H T, H T H, T H H, T T H, T H T, H T T\} \quad \Rightarrow n(D)=7$
$P(D)=\frac{n(d)}{n(S)}=\frac{7}{8}$
18. Two dice are numbered $1,2,3,4,5,6$ and $1,1,2,2,3,3$ respectively. They are rolled and the sum of the numbers on them is noted. Find the probability of getting each sum from 2 to 9 separately.

Answer:

$S=\{(1,1),(1,1),(1,2),(1,2),(1,3),(1,3)$
$(2,1),(2,1),(2,2),(2,2),(2,3),(2,3)$
'(3,1),(3,1),(3,2),(3,2),(3,3),(3,3)
$(4,1),(4,1),(4,2),(4,2),(4,3),(4,3)$
$(5,1),(5,1),(5,2),(5,2),(5,3),(5,3)$
$(6,1),(6,1),(6,2),(6,2),(6,3),(6,3)\} \quad \Rightarrow n(S)=36$
(i) Let A be the event of getting sum $=2$

$$
A=\{(1,1),(1,1)\} \quad \Rightarrow n(A)=2
$$

$P(A)=\frac{n(A)}{n(S)} \quad=\frac{2}{36} \quad=\frac{1}{18}$
(ii) Let B be the event of getting sum $=3$
$B=\{(1,2),(1,2),(2,1),(2,1)\}$

$$
\Rightarrow n(B)=4
$$

$P(B)=\frac{n(B)}{n(S)} \quad=\frac{4}{36} \quad=\frac{1}{9}$
(iii) Let C be the event of getting sum $=4$
$A=\{(1,3),(1,3),(2,2),(2,2),(3,1),(3,1)\}$
$\Rightarrow n(C)=6$
$P(C)=\frac{n(C)}{n(S)} \quad=\frac{6}{36} \quad=\frac{1}{6}$
(iv) Let D be the event of getting sum $=5$
$A=\{(2,3),(2,3),(3,2),(3,2),(4,1),(4,1)\} \quad \Rightarrow n(D)=6$
$P(D)=\frac{n(D)}{n(S)} \quad=\frac{6}{36}=\frac{1}{6}$
(v) Let E be the event of getting sum $=6$
$A=\{(3,3),(3,3),(4,2) .(4,2),(5,1),(5,1)\} \quad \Rightarrow n(E)=6$
$P(E)=\frac{n(E)}{n(S)} \quad=\frac{6}{36} \quad=\frac{1}{6}$
(vi) Let F be the event of getting sum $=7$
$A=\{(4,3),(4,3),(5,2),(5,2),(6,1),(6,1)\} \quad \Rightarrow n(F)=6$
$P(F)=\frac{n(F)}{n(S)} \quad=\frac{6}{36} \quad=\frac{1}{6}$
(vii) Let G be the event of getting sum $=8$
$A=\{(5,3),(5,3),(6,2),(6,2)\}$
$\Rightarrow n(G)=4$
$P(G)=\frac{n(G)}{n(S)} \quad=\frac{4}{36} \quad=\frac{1}{9}$
(viii) Let H be the event of getting sum $=9$
$A=\{(6,3),(6,3)\}$
$\Rightarrow n(H)=2$
$P(H)=\frac{n(H)}{n(S)} \quad=\frac{2}{36} \quad=\frac{1}{18}$
19. A bag contains 5 red balls, 6 white balls, 7 green balls, 8 black balls. One ball is drawn at random from the bag. Find the probability that the ball drawn is
(i) white ball (ii) black or red ball (iii) not white (iv) neither white nor black

Answer:
Sample space $(S)=5+6+7+8 \quad \Rightarrow n(S)=26$
(i) Let A be the probability of getting white ball $\quad \Rightarrow n(A)=6$

$$
P(A)=\frac{n(A)}{n(S)}=\frac{6}{26}=\frac{3}{13}
$$

(ii) Let B be the probability of getting Black or Red ball $\quad \Rightarrow n(B)=8+5=13$

$$
P(B)=\frac{n(B)}{n(S)} \quad=\frac{13}{26}=\frac{1}{2}
$$

(i) Let C be the probability of getting not a white ball $\quad \Rightarrow n(C)=5+7+8=20$

$$
P(C)=\frac{n(c)}{n(S)} \quad=\frac{20}{26}=\frac{10}{13}
$$

(i) Let D be the probability of getting neither white nor black ball $\quad \Rightarrow n(D)=5+7=12$
$P(D)=\frac{n(D)}{n(S)}=\frac{12}{26}=\frac{6}{13}$
20. In a box there are 20 non - defective and some defective bulbs. If the probability that a bulb selected at random from the box found to be defective is $\frac{3}{8}$ then, find the number of defective bulbs.
Answer:
Let ' x ' be the number of defective bulbs
Total number of bulbs $=x+20$

$$
\Rightarrow n(S)=x+20
$$

Let A be the event of selecting defective bulbs $=x \Rightarrow n(A)=x$
$\Rightarrow P(A)=\frac{n(A)}{n(S)}=\frac{3}{8} \quad \Rightarrow \frac{x}{x+20}=\frac{3}{8} \quad \Rightarrow 8(x)=3(x+20)$
$\Rightarrow 8 x=3 x+60 \quad \Rightarrow 8 x-3 x=60$

$$
\Rightarrow 5 x=60 \quad \Rightarrow x=\frac{60}{5}
$$

$\Rightarrow x=12$
Therefore number of defective bulbs $=12$
21. The king and queen of diamonds, queen and jack of hearts, jack and king of spades are removed from a deck of 52 cards and then well shuffled. Now one card is drawn at random from the remaining cards. Determine the probability that the card is (i) a clavor (ii) a queen of red card (iii) a king of black card.
Answer:
Removed cards: King and Queen of Diamonds, Queen and Jack of Hearts and Jack and King of Spades
By the data given $\quad \Rightarrow n(S)=52-2-2-2=46$
(i) Let A be the event of selecting clavor card $\Rightarrow n(A)=13$
$\Rightarrow P(A)=\frac{n(A)}{n(S)}=\frac{13}{46}$
(ii) Let B be the event of selecting Queen of red card

Queen of diamonds and Heards are removed. $\quad \Rightarrow n(B)=0$
$\Rightarrow P(B)=\frac{n(B)}{n(S)}=\frac{0}{46}=0$
(iii) Let C be the event of selecting king of black card.

King of Spade is removed $\quad n(C)=1$
$\Rightarrow P(C)=\frac{n(C)}{n(S)}=\frac{1}{46}$
22. Some boys are playing a game, in which the stone thrown by them landing in a circular region (given in the figure) is considered as win and landing other than the circular region is considered as loss. What is the probability to win the game?
Answer:

Let A be the probability of win the game $=$ Area of circular region $=\pi r^{2} \quad=\pi(1)=\pi$ sq. feet

$$
\Rightarrow n(A)=\pi s q \text {. feet }
$$

Sample space Area of the rectangular region $=1 \times b=4 \times 3=12$ sq. feet $\Rightarrow n(S) 12$ sq. feet
Probability of win the game $\Rightarrow P(A)=\frac{n(A)}{n(S)}=\frac{\pi}{12}=\frac{3.14}{12}=\frac{3.14 \times 100}{12 \times 100}=\frac{314}{1200}$

$$
\Rightarrow P(A)=\frac{157}{600}
$$

23. Two customers Priya and Amuthan are visiting a particular shop in the same week (Monday Saturday). Each is equally likely to visit the shop on any one day as on another day. What is the probability that both will visit the shop on
(i) the same day
(ii) different days
(iii) consecutive days

Answer:
Sample space $(S)=\{$ Mon, Tue, Wed, Thu, Fri, Sat $\} \Rightarrow n(S)=6$
Probability of Priya and Amuthan to visit shop on any day $=\frac{1}{6}$
(i) Probability that both of them will visit the shop on same day $=6 \times \frac{1}{6} \times \frac{1}{6}=\frac{1}{6}$
(ii) Probability that both of them will visit the shop on different days $=6 \times \frac{1}{6} \times \frac{5}{6}=\frac{5}{6}$
(III) Probability that both of them will visit the shop on consecutive days

$$
\begin{aligned}
& A=\{(\text { Mon, Tue }),(\text { Tue, Wed), (Wed, Thu }),(\text { Thu, Fri), (Fri, Sat })\} \quad \Rightarrow n(A)=5 \\
& \Rightarrow P(A)=\frac{n(A)}{n(S)}=\frac{5}{6}
\end{aligned}
$$

24. If $P(A)=0.37, P(B)=0.42, P(A \cap B)=0.09$ then find $P(A \cup B)$

Answer:

Given : $P(A)=0.37, P(B)=0.42, P(A \cap B)=0.09$
$P(A \cup B)=P(A)+P(B)-P(A \cap B) \quad \Rightarrow P(A \cup B)=0.37+0.42-0.09 \quad \Rightarrow P(A \cup B)=0.70$
$\Rightarrow P(A \cup B)=0.7$
25. What is the probability of drawing either a king or a queen in a single draw from a well shuffled pack of 52 cards?
Answer:
Total number of cards $=52 \Rightarrow n(S)=52$
Let A be the probability of drawing king cards $\quad \Rightarrow n(A)=4$

$$
P(A)=\frac{n(A)}{n(S)} \quad=\frac{4}{52}=\frac{1}{13}
$$

Let B be the probability of drawing Queen cards $\quad \Rightarrow n(B)=4$

$$
P(B)=\frac{n(B)}{n(S)} \quad=\frac{4}{52}=\frac{1}{13}
$$

$P(A \cap B=0$

$$
\begin{aligned}
P(A \cup B)=P(A)+P(B)-P(A \cap B) & \Rightarrow \quad P(A \cup B)=\frac{1}{13}+\frac{1}{13}-0 \\
& \Rightarrow \quad P(A \cup B)=\frac{2}{13}
\end{aligned}
$$

26. Two dice are rolled together. Find the probability of getting a doublet or sum of faces as 4.

Answer:

$S=\{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)$
$(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)$
$(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)$
$(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)$
$(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)$
$(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\} \quad \Rightarrow n(S)=36$
Let A be the probability of getting doublets

$$
\begin{array}{lll}
A & =\{(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)\} & \Rightarrow n(A)=6 \\
P(A)=\frac{n(A)}{n(S)}=\frac{4}{36}
\end{array}
$$

Let B be the probability of getting face sum 4

$$
\begin{array}{ll}
B & =\{(1,3),(2,2),(3,1)\} \\
P(B) & =\frac{n(B)}{n(S)}=\frac{3}{36}
\end{array} \quad \Rightarrow n(B)=3
$$

$(A \cap B)=\{(2,2)\} \quad n(A \cap B)=1$

$$
P(A \cap B) \quad=\frac{n(A \cap B)}{n(S)} \quad=\frac{1}{36}
$$

$P(A \cup B)=P(A)+P(B)-P(A \cap B) \quad \Rightarrow \quad P(A \cup B)=\frac{4}{36}+\frac{3}{36}-\frac{1}{36}$
$P(A \cup B)=\frac{4+3-1}{36} \quad \Rightarrow P(A \cup B)=\frac{6}{36} \quad \Rightarrow P(A \cup B)=\frac{1}{6}$
27. If A and B are two events such that $P(A)=\frac{1}{4}, P(B)=\frac{1}{2}$ and $P(A$ and $B)=\frac{1}{8}$, find (i) P (A or B) (ii) P (not A and not B).

Answer:

(i) $\quad P(A$ or $B)=P(A \cup B)$

$$
\begin{array}{ll}
P(A \cup B)=P(A)+P(B)-P(A \cap C) & \Rightarrow P(A \cup B)=\frac{1}{4}+\frac{1}{2}-\frac{1}{8} \\
P(A \cup B)=\frac{2+4-1}{8} & \Rightarrow P(A \cup B)=\frac{5}{8}
\end{array}
$$

(ii) $\quad P(\operatorname{not} A$ and not $B)$.
$P(\operatorname{not} A$ and not $B)=P(\bar{A} \cap \bar{B})$
$\Rightarrow P(\bar{A} \cap \bar{B}) \quad=P(\overline{A U B})$

$$
=1-P(A \cup B)
$$

$$
\begin{aligned}
& \sim 96 \sim \\
& =1-\frac{5}{8} \quad \Rightarrow P(\bar{A} \cap \bar{B})=\frac{8-5}{8} \\
\Rightarrow P(\bar{A} \cap \bar{B}) & =\frac{3}{8}
\end{aligned}
$$

28. A card is drawn from a pack of 52 cards. Find the probability of getting a king or heart or a red card.
Answer:
Total number of cards $=52 \Rightarrow n(S)=52$
Let A be the event of getting a king card $\quad \Rightarrow n(A)=4$

$$
P(A)=\frac{n(A)}{n(S)}=\frac{4}{52}
$$

Let B be the event of getting a heart card $\quad \Rightarrow n(B)=13$

$$
P(B)=\frac{n(B)}{n(S)}=\frac{13}{52}
$$

Let C be the event of getting a red card $\quad \Rightarrow n(C)=13+13 \quad \Rightarrow n(C)=26$

$$
P(C)=\frac{n(c)}{n(S)}=\frac{26}{52}
$$

$(A \cap B)=$ Probability of getting heart king $\quad \Rightarrow n(A \cap B)=1$

$$
P(A \cap B)=\frac{n(A \cap B)}{n(S)}=\frac{1}{52}
$$

$(B \cap C)=$ Probability of getting red and heart $\Rightarrow n(B \cap C)=13$

$$
P(B \cap C)=\frac{n(B \cap C)}{n(S)}=\frac{13}{52}
$$

$(A \cap C)=$ Probability of getting red king $\quad \Rightarrow n(A \cap B)=2$

$$
P(A \cap C)=\frac{n(A \cap C)}{n(S)}=\frac{2}{52}
$$

$(A \cap B \cap C)=$ Probability of getting heart, king which is red) $\Rightarrow n(A \cap B \cap C)=1$

$$
P(A \cap B \cap C)=\frac{n(A \cap B \cap C)}{n(S)}=\frac{1}{52}
$$

$\Rightarrow P(A \cup B \cup C)=P(A)+P(B)+P(C)-P(A \cap B)-P(B \cap C)-P(A \cap C)+P(A \cap B \cap C)$

$$
\begin{aligned}
& =\frac{4}{52}+\frac{13}{52}+\frac{26}{52}-\frac{1}{52}-\frac{13}{52}-\frac{2}{52}+\frac{1}{52} \\
& =\frac{4+13+26-1-13-2+1}{52} \\
\Rightarrow P(A \cup B \cup C)= & =\frac{28}{52} \quad \Rightarrow P(A \cup B \cup C)=\frac{7}{13}
\end{aligned}
$$

29. In a class of 50 students, 28 opted for NCC, 30 opted for NSS and 18 opted both NCC and NSS. One of the students is selected at random. Find the probability that
(i) The student opted for NCC but not NSS. (ii) The student opted for NSS but not NCC.
(iii) The student opted for exactly one of them.

Answer:
Total number of students $n(S)=50$
Let A and B be the events of students opted for NCC and NSS respectively.

$$
\begin{array}{ll}
n(A)=28 & \Rightarrow P(A)=\frac{n(A)}{n(S)} \quad=\frac{28}{50} \\
n(B)=30 & \Rightarrow P(B)=\frac{n(B)}{n(S)} \quad=\frac{30}{50} \\
n(A \cap B)=18 & \Rightarrow P(A \cap B) \quad=\frac{n(A \cap B)}{n(S)} \quad=\frac{18}{50}
\end{array}
$$

(i) Probability of the students opted for NCC but not NSS
$P(A \cap \bar{B})=P(A)-P(A \cap B)=\frac{28}{50}-\frac{18}{50}=\frac{28-18}{50}=\frac{10}{50}$
$P(A \cap \bar{B}) \quad=\frac{10}{50}$
(ii) Probability of the students opted for NSS but not NCC
$P(\bar{A} \cap B)=P(B)-P(A \cap B) \quad=\frac{30}{50}-\frac{18}{50}=\frac{30-18}{50}=\frac{12}{50}$
$P(\bar{A} \cap B) \quad=\frac{12}{50}$
(iii) Probability of the students opted for exactly one of them.
$P[(A \cap \bar{B}) \cup(\bar{A} \cap B)]=P(A \cap \bar{B})+P(\bar{A} \cap B) \quad=\frac{10}{50}+\frac{12}{50} \quad=\frac{10+12}{50} \quad=\frac{22}{50}$
$P[(A \cap \bar{B}) U(\bar{A} \cap B)]=\frac{11}{25}$
(note that $(A \cap \bar{B}),(\bar{A} \cap B)$ are mutually exclusive events)
30. A and B are two candidates seeking admission to IIT. The probability that A getting selected is 0.5 and the probability that both A and B getting selected is 0.3 . Prove that the probability of B being selected is atmost 0.8.

Answer:

$P(A)=0.5, \quad P(A \cap B)=0.3$
We have $P(A \cup B) \leq 1$
$\Rightarrow P(A)+P(B)-P(A \cap B) \leq 1$
$\Rightarrow 0.5+P(B)-0.3 \leq$
$\Rightarrow 0.2+P(B) \leq 1 \quad \Rightarrow P(B) \leq 1-0.2$
$\Rightarrow P(B) \leq 0.8$
Therefore, probability of B getting selected is atmost 0.8
31. If $P(A)=\frac{2}{3}, P(B)=\frac{2}{5}, P(A \cup B)=\frac{1}{3}$ then find $P(A \cap B)$

Answer:

$$
\begin{array}{ll}
P(A \cup B)=P(A)+P(B)-P(A \cap B) & \Rightarrow \frac{1}{3}=\frac{2}{3}+\frac{2}{5}-P(A \cap B) \\
\Rightarrow-P(A \cap B)=\frac{1}{3}-\frac{2}{3}-\frac{2}{5} & \Rightarrow P(A \cap B)=-\frac{1}{3}+\frac{2}{3}+\frac{2}{5} \\
\Rightarrow P(A \cap B)=\frac{-5+10+6}{15} & \Rightarrow P(A \cap B)=\frac{11}{15}
\end{array}
$$

32. A and B are two events such that, $P(A)=0.42, P(B)=0.48$ and $P(A \cap B)=0.16$. Find
(i) P(not A)
(ii) $P($ not $B)$
(iii) P (A or B)

Answer:

Given : $P(A)=0.42, P(B)=0.48$ and $P(A \cap B)=0.16$.
(i) $P(\operatorname{not} A)$

$$
\begin{array}{ll}
=P(\bar{A}) & =1-P(A) \\
& =1-0.42 \\
& =0.58 \\
& =P(\bar{B}) \\
& =1-P(B) \\
& =0.52
\end{array}
$$

(ii) $P(\operatorname{not} B)=P(\bar{B})$
(iii) $P(A$ or $B) \quad=P(A \cup B)=P(A)+P(B)-P(A \cap B)$

$$
\begin{aligned}
& =0.42+0.48-0.16 \\
& =0.74
\end{aligned}
$$

33. If A and B are two mutually exclusive events of a random experiment and $P(\operatorname{not} A)=0.45$, $P(A \cup B)=0.65$, then find $P(B)$

Answer:

Given : $P(\operatorname{not} A)=0.45, P(A \cup B)=0.65$
A and B are mutually exclusive $\Rightarrow P(A \cap B)=0$

$$
\begin{array}{ll}
\Rightarrow P(A)=1-P(\bar{A}) & \Rightarrow P(A)=1-0.45 \\
\Rightarrow P(A)=0.55 & \\
\Rightarrow P(A \cup B)=P(A)+P(B)-P(A \cap B) & \Rightarrow 0.65=0.55+P(B)-0 \\
\Rightarrow P(B)=0.65-0.55 & \Rightarrow P(B)=0.10 \\
\Rightarrow P(B)=0.1 &
\end{array}
$$

34. The probability that atleast one of A or B occur is 0.6. If A and B occur simultaneouosly with probability 0.2 , then find $P(\bar{A})+P(\bar{B})$.
Answer:
Given : $P(A \cup B)=0.6, \quad P(A \cap B)=0.2$

$$
\begin{aligned}
P(\bar{A})+P(\bar{B}) \quad & =[1-P(A \cup B)]+[1-P(A \cap B)] \\
& =(1-0.6)+(1-0.2) \\
& =0.4+0.8 \\
& =1.2
\end{aligned}
$$

35. The proabability of happening of an event A is 0.5 and that of B is 0.3 . If A and B are mutually exclusive events, then find the probability that neither A nor B happen.

Answer:

Given : $P(A)=0.5, P(B)=0.3$

$$
\begin{aligned}
& \Rightarrow P(A \cup B)=P(A)+P(B)-P(A \cap B) \quad \Rightarrow P(A \cup B)=0.5+0.3+0 \\
& \Rightarrow P(A \cup B)=0.8
\end{aligned}
$$

Probability that neither A nor B

$$
\begin{aligned}
& \Rightarrow P(\overline{A U B})=1-P(A U B) \\
& \Rightarrow P(\overline{A U B})=1-0.8 \\
& \Rightarrow P(\overline{A U B})=0.2
\end{aligned}
$$

Probability that neither A nor B is 0.2
36. Two dice are rolled once. Find the probability of getting an even number on the first die or a total of face sum 8.

Answer:

$S=\{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)$

$$
\begin{aligned}
& (3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6) \\
& (5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\} \quad \Rightarrow n(S)=36
\end{aligned}
$$

Let A be the event of getting even number on the $1^{\text {st }}$ die

$$
\begin{aligned}
& \boldsymbol{A}=\quad\{(2,1),(2,2),(2,3),(2,4),(2,5),(2,6) \\
&(4,1),(4,2),(4,3),(4,4),(4,5),(4,6) \\
&(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\} \quad \Rightarrow n(A)=18
\end{aligned}
$$

$$
P(A)=\frac{n(A)}{n(S)} \quad=\frac{18}{36}
$$

Let B be the probability of getting face sum 8

$$
\begin{array}{ccc}
B \quad=\{(2,6),(3,5),(4,4),(5,3),(6,2)\} & \Rightarrow n(B)=5 \\
P(B)=\frac{n(B)}{n(S)}=\frac{5}{36} & \Rightarrow n(A \cap B)=3 & =\frac{3}{36} \\
(A \cap B)=\{(2,6),(4,4),(6,2)\} & \Rightarrow & P(A \cup B)=\frac{18}{36}+\frac{5}{36}-\frac{3}{36} \\
P(A \cap B) \\
P(A \cup B)=P(A)+P(B)-P(A \cap C) \\
P(A \cup B)=\frac{18+5-3}{36} \quad \Rightarrow P(A \cup B)=\frac{20}{36} \quad \Rightarrow P(A \cup B)=\frac{5}{9}
\end{array}
$$

37. From a well - shuffled pack of 52 cards, a card is drawn at random. Find the probability of it being either a red king or a black queen.
Answer:

$$
\text { Total number of cards }=52 \quad \Rightarrow n(S)=52
$$

Let A be the probability of drawing red king cards $\Rightarrow n(A)=2$

$$
P(A)=\frac{n(A)}{n(S)} \quad=\frac{2}{52}=\frac{2}{52}
$$

Let B be the probability of drawing black Queen cards

$$
\Rightarrow n(B)=2
$$

$$
P(B)=\frac{n(B)}{n(S)} \quad=\frac{2}{52} \quad=\frac{2}{52}
$$

$P(A \cap B=0$

$$
\begin{aligned}
P(A \cup B)=P(A)+P(B)-P(A \cap B) \quad & \Rightarrow P(A \cup B)=\frac{2}{52}+\frac{2}{52}-0 \\
& \Rightarrow P(A \cup B)=\frac{2+2}{52} \\
& \Rightarrow P(A \cup B)=\frac{4}{52} \quad \Rightarrow \quad P(A \cup B)=\frac{1}{13}
\end{aligned}
$$

38. A box contains cards numbered 3, 5, 7, 9, \qquad 35, 37. A card is drawn at random from the box. Find the probability that the drawn card have either multiples of 7 or a prime number.

Answer:

$S=\{3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37\} \Rightarrow n(S)=18$

Let A be the event of multiples of 7 cards $=\{7,21,35\} \quad \Rightarrow n(A)=3$

$$
P(A)=\frac{n(A)}{n(S)} \quad=\frac{3}{18}
$$

Let B be the event of prime number cards $=\{3,5,7,11,13,17,19,23,29,31,37\} \Rightarrow n(B)=11$

$$
\begin{aligned}
& P(B)=\frac{n(B)}{n(S)}=\frac{11}{18} \\
&(A \cap B)=\{7\} \quad n(A \cap B)=1 \\
& P(A \cap B)=\frac{n(A \cap B)}{n(S)}=\frac{1}{18} \\
& P(A \cup B)=P(A)+P(B)-P(A \cap B) \Rightarrow \quad P(A \cup B)=\frac{3}{18}+\frac{11}{18}-\frac{1}{18} \\
& \Rightarrow \quad P(A \cup B)=\frac{3+11-1}{18} \\
& \Rightarrow \quad P(A \cup B)=\frac{13}{18}
\end{aligned}
$$

39. Three unbiased coins are tossed once. Find the probability of getting atmost 2 tails or atleast 2 heads.

Answer:

Sample Space (S) $=\{H H H, H H T, H T H, T H H, T T T, T T H, T H T, H T T\}$

$$
n(S)=8
$$

Let A be the event of getting atmost 2 tails.

$$
\begin{array}{ll}
A=\{H H H, H H T, H T H, T H H, T T H, T H T, H T T\} & \Rightarrow n(A)=7 \\
\Rightarrow P(A)=\frac{n(A)}{n(S)} \quad=\frac{7}{8} &
\end{array}
$$

Let B be the event of getting atleast 2 heads

$$
B=\{H H H, H H T, H T H, T H H\} \quad \Rightarrow n(B)=4
$$

$$
\Rightarrow P(B)=\frac{n(B)}{n(S)} \quad=\frac{4}{8}
$$

$$
(A \cap B)=\{H H H, H H T, H T H, T H H\} \quad \Rightarrow n(A \cap B)=4
$$

$$
\Rightarrow P(A \cap B) \quad=\frac{n(A \cap B)}{n(S)}=\frac{4}{8}
$$

$$
\begin{aligned}
P(A \cup B)=P(A)+P(B)-P(A \cap B) \quad & \Rightarrow \quad P(A \cup B)=\frac{7}{8}+\frac{4}{8}-\frac{4}{8} \\
& \Rightarrow \quad P(A \cup B)=\frac{7+4-4}{8} \\
& \Rightarrow \quad P(A \cup B)=\frac{7}{8}
\end{aligned}
$$

40. The probability that a person will get an electrification contract is $\frac{3}{5}$ and the probability that he will not get plumbing contract $\frac{5}{8}$. The probability of getting atleast one contract is $\frac{5}{7}$. What is the probability that he will get both?

Answer:

Given: $P(A)=\frac{3}{5}, P(\bar{B})=\frac{5}{8}, P(A \cup B)=\frac{5}{7}$

$$
P(\bar{B})=\frac{5}{8} \quad \Rightarrow P(B)=1-P(\bar{B}) \quad \Rightarrow P(B)=1-\frac{5}{8} \quad \Rightarrow P(B)=\frac{8-5}{8}
$$

$$
\Rightarrow P(B)=\frac{3}{8}
$$

$$
\begin{aligned}
& \sim 101 \sim \\
\Rightarrow & P(A \cup B)=\frac{3}{5}+\frac{3}{8}-\frac{5}{7} \\
\Rightarrow & P(A \cup B)=\frac{168+105-200}{280} \\
\Rightarrow & P(A \cup B)=\frac{73}{280}
\end{aligned}
$$

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B) \quad \Rightarrow \quad P(A \cup B)=\frac{3}{5}+\frac{3}{8}-\frac{5}{7}
$$

Therefore probability of getting both offer $=\frac{73}{280}$
41. In a town of 8000 people, 1300 are over 50 years and 3000 are females. It is known that 30% of the females are over 50 years. What is the probability that a chosen individual from the town is either a female or over 50 years?
Answer:
$n(S)=8000$,
$A=$ Over 50 years $\quad \Rightarrow n(A)=1300$
$B=$ Females $\quad \Rightarrow n(B)=3000$
$A \cap B=30 \%$ of females $\quad \Rightarrow n(A \cap B)=\frac{30}{100} \times 3000 \quad \Rightarrow n(A \cap B)=30 \times 30$

$$
\Rightarrow n(A \cap B)=900
$$

$\Rightarrow P(A)=\frac{n(A)}{n(S)}=\frac{1300}{8000}$
$\Rightarrow P(B)=\frac{n(B)}{n(S)}=\frac{3000}{8000}$
$\Rightarrow P(A \cap B)=\frac{n(A \cap B)}{n(S)}=\frac{900}{8000}$

$$
\begin{aligned}
P(A \cup B)=P(A)+P(B)-P(A \cap B) & \Rightarrow P(A \cup B)=\frac{1300}{8000}+\frac{3000}{8000}-\frac{900}{8000} \\
& \Rightarrow P(A \cup B)=\frac{1300+3000-900}{8000} \\
& \Rightarrow P(A \cup B)=\frac{3400}{8000} \Rightarrow P(A \cup B)=\frac{34}{80} \\
& \Rightarrow P(A \cup B)=\frac{17}{40}
\end{aligned}
$$

42. A coin is tossed thrice. Find the probability of getting exactly two heads or at least one tail or two consecutive heads.

Answer:

Sample Space (S) $=\{H H H, H H T, H T H, T H H, T T T, T T H, T H T, H T T\}$

$$
n(S)=8
$$

Let A be the event of getting exactly 2 heads.

$$
\begin{array}{ll}
A=\{H H T, H T H, T H H\} & \Rightarrow n(A)=3 \\
\Rightarrow P(A)=\frac{n(A)}{n(S)}=\frac{3}{8} &
\end{array}
$$

Let B be the event of getting atleast one tail

$$
\Rightarrow P(B)=\frac{n(B)}{n(S)} \quad=\frac{7}{8}
$$

Let C be the event of getting two consecutive heads

$$
\begin{aligned}
& C=\{H H T, T H H, H H H\} \quad \Rightarrow n(B)=3 \\
& \Rightarrow P(C)=\frac{n(C)}{n(S)} \quad=\frac{3}{8}
\end{aligned}
$$

$(A \cap B)=\{H H T, H T H, T H H\} \quad \Rightarrow n(A \cap B)=3$

$$
P(A \cap B)=\frac{n(A \cap B)}{n(S)}=\frac{3}{8}
$$

$(B \cap C)=\{H H T, T H H\} \quad \Rightarrow n(B \cap C)=2$

$$
P(B \cap C)=\frac{n(B \cap C)}{n(S)}=\frac{2}{8}
$$

$(A \cap C)=\{H H T, T H H\} \Rightarrow n(A \cap C)=2$

$$
P(A \cap C)=\frac{n(A \cap C)}{n(S)}=\frac{2}{8}
$$

$(A \cap B \cap C)=\{H H T, T H H\} \quad \Rightarrow n(A \cap B \cap C)=2$

$$
P(A \cap B \cap C)=\frac{n(A \cap B \cap C)}{n(S)}=\frac{2}{8}
$$

$\Rightarrow P(A \cup B \cup C)=P(A)+P(B)+P(C)-P(A \cap B)-P(B \cap C)-P(A \cap C)+P(A \cap B \cap C)$

$$
\begin{aligned}
& =\frac{3}{8}+\frac{7}{8}+\frac{3}{8}-\frac{3}{8}-\frac{2}{8}-\frac{2}{8}+\frac{2}{8} \\
& =\frac{3+7+3-3-2-2+2}{8}
\end{aligned}
$$

$\Rightarrow P(A \cup B \cup C)=\frac{8}{8} \quad \Rightarrow P(A \cup B \cup C)=1$
43. If A, B, C are any three events such that probability of B is twice as that of probability of A and B probability of C is thrice as that of probability of A and if $P(A \cap B)=\frac{1}{6}, p(B \cap C)=\frac{1}{4}$, $P(A \cap C)=\frac{1}{8}, P(A \cup B \cup C)=\frac{9}{10}, P(A \cap B \cap C)=\frac{1}{15}$, then find $P(A), P(B)$ and $P(C)$?

Answer:

$P(B)=2 P(A), P(C)=3 P(A), P(A \cap B)=\frac{1}{6}, p(B \cap C)=\frac{1}{4}, P(A \cap C)=\frac{1}{8}, P(A \cup B \cup C)=\frac{9}{10}$,
$P(A \cap B \cap C)=\frac{1}{15}$
$\Rightarrow P(A \cup B \cup C)=P(A)+P(B)+P(C)-P(A \cap B)-P(B \cap C)-P(A \cap C)+P(A \cap B \cap C)$

$$
\begin{aligned}
& \frac{9}{10}=P(A)+2 P(A)+3 P(A)-\frac{1}{6}-\frac{1}{4}-\frac{1}{8}+\frac{1}{15} \\
& \frac{9}{10}=6 P(A)-\frac{1}{6}-\frac{1}{4}-\frac{1}{8}+\frac{1}{15} \Rightarrow \frac{9}{10}+\frac{1}{6}+\frac{1}{4}+\frac{1}{8}-\frac{1}{15}=6 P(A)
\end{aligned}
$$

$$
6 P(A)=\frac{108+20+30+15-8}{120}
$$

$$
6 P(A)=\frac{165}{120} \quad \Rightarrow P(A)=\frac{165}{120} \times \frac{1}{6} \quad \Rightarrow P(A)=\frac{165}{720} \quad \Rightarrow P(A)=\frac{11}{48}
$$

$$
\Rightarrow P(A)=\frac{11}{48}
$$

$$
\Rightarrow P(B)=2 \times \frac{11}{48} \quad P(B)=\frac{11}{24}
$$

$\Rightarrow P(C)=3 \times \frac{11}{48} \quad P(C)=\frac{\mathbf{1 1}}{\mathbf{1 6}}$
44. In a class of 35 , students are numbered from 1 to 35 . The ratio of boys to girls is $4: 3$. The roll numbers of students begin with boys and end with girls. Find the probability that a student selected is either a boy with prime roll number or a girl with composite roll number or an even roll number.

Answer:

$n(S)=35, \quad n(B): n(G)=4: 3$
$\begin{array}{lll}\Rightarrow n(B)=35 \times \frac{4}{7} & \Rightarrow n(B)=5 \times 4 & \Rightarrow n(B)=20 \\ \Rightarrow n(G)=35 \times \frac{3}{7} & \Rightarrow n(G)=5 \times 3 & \Rightarrow n(G)=15\end{array}$
Boys $=\{1,2,3,4,5,6,7,8,9, ` 10,11,12,13,14,15,16,17,18,19,20\}$
Girls $=\{21,22,23,24,25,26,27,28,29,30,31,32,33,34,35\}$
Let A be the event of getting boys with prime numbers.
$A=\{2,3,5,7,11,13,17,19\} \quad \Rightarrow n(A)=8$
$\Rightarrow \mathrm{P}(\mathrm{A})=\frac{n(A)}{n(S)}=\frac{8}{35}$
Let B be the event of getting girls with composite numbers.
$B=\{21,22,24,25,26,27,28,30,32,33,34,35\} \quad \Rightarrow n(B)=12$
$\Rightarrow \mathrm{P}(\mathrm{B})=\frac{n(B)}{n(S)}=\frac{12}{35}$
Let C be the event of getting even roll numbers.
$C=\{2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34\} \quad \Rightarrow n(C)=17$
$\Rightarrow \mathrm{P}(\mathrm{C})=\frac{n(C)}{n(S)}=\frac{17}{35}$
$(A \cap B)=\{ \} \Rightarrow n(A \cap B)=0$

$$
P(A \cap B)=\frac{n(A \cap B)}{n(S)}=\frac{0}{35} \quad=0
$$

$(B \cap C)=\{22,24,26,28,30,32,34\} \quad \Rightarrow n(B \cap C)=7$

$$
\begin{array}{r}
P(B \cap C)=\frac{n(B \cap C)}{n(S)}=\frac{7}{35} \\
(A \cap C)=\{2\} \Rightarrow n(A \cap C)=1 \\
P(A \cap C)=\frac{n(A \cap C)}{n(S)}=\frac{1}{35}
\end{array}
$$

$$
(A \cap B \cap C)=\{ \} \quad \Rightarrow n(A \cap B \cap C)=0
$$

$$
P(A \cap B \cap C)=\frac{n(A \cap B \cap C)}{n(S)}=\frac{0}{35}=0
$$

$$
\Rightarrow P(A \cup B \cup C)=P(A)+P(B)+P(C)-P(A \cap B)-P(B \cap C)-P(A \cap C)+P(A \cap B \cap C)
$$

$$
=\frac{8}{35}+\frac{12}{35}+\frac{17}{35}-0-\frac{7}{35}-\frac{1}{35}+0
$$

$$
=\frac{8+12+17-7-1}{35}
$$

$\Rightarrow P(A \cup B \cup C)=\frac{29}{35}$

