www.kalvikural.com

X UNIVERSAL MAT HR. SEC. SCHOOL
UT 03/A\&C
UNIT TEST - 3 EXAM NO -3 MATHEMATICS - A \& C

	MATHEMATICS TIME $: 1.30$ MATRICES	MARKS $: 50$
I \quad Fill in the blanks:		$10 \times 1=10$

1. If $\mathrm{A}=2 \times 2$ matrix and $\mathrm{B}=3 \times 4$ matrix how many columns does AB have \qquad
2. If number of columns and rows are not equal in a matrix then it is said to be a \qquad
\qquad -
3. Define diagonal matrix.
4. If $A=\left[\begin{array}{ccc}5 & 2 & 2 \\ -\sqrt{17} & 0.7 & 5 / 2 \\ 8 & 3 & 1\end{array}\right]$ then verify $\left(A^{T}\right)^{T}=A$
5. If $A=\left[\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right], B=\left[\begin{array}{ll}2 & 0 \\ 1 & 3\end{array}\right]$ find $A B, B A$ and check if $A B=B A$?
6. Construct a 3×3 matrix whose elements are given by $a_{i j}=|i-2 j|$
7. If $\mathrm{A}=\left[\begin{array}{cccc}1 & 3 & 5 & 7 \\ 2 & 4 & 6 & 8 \\ 9 & 11 & 13 & 15\end{array}\right]$ then the order of the matrix $\mathrm{A}^{\mathrm{T}}=$ \square

III Answer the following:

$4 \times 5=20$
4. Transpose of a column matrix is \qquad
5. Find the matrix X if $2 X+\left[\begin{array}{ll}1 & 3 \\ 5 & 7\end{array}\right]=\left[\begin{array}{ll}5 & 7 \\ 9 & 5\end{array}\right]$ is \qquad -
6. A square matrix in which elements in the leading diagonal are all " 1 " and rest are all zero is called an \qquad matrix.
7.

16. If $A=\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]$ show that $A^{2}-5 A+7 \mathrm{I}_{2}=0$
17. If $A=\left[\begin{array}{ccc}1 & 2 & 1 \\ 2 & -1 & 1\end{array}\right] B=\left[\begin{array}{cc}2 & -1 \\ -1 & 4 \\ 0 & 2\end{array}\right]$ show that $(A B)^{T}=B^{T} A^{T}$
18. If $A=\left[\begin{array}{cc}1 & 1 \\ -1 & 3\end{array}\right], B=\left[\begin{array}{cc}1 & 2 \\ -4 & 2\end{array}\right], C=\left[\begin{array}{cc}-7 & 6 \\ 3 & 2\end{array}\right]$ verify that $A(B+C)=A B+A C$
19. Find the value of x and y. If $x\left[\begin{array}{c}4 \\ -3\end{array}\right]+y\left[\begin{array}{c}-2 \\ 3\end{array}\right]=\left[\begin{array}{l}4 \\ 6\end{array}\right]$

IV Answer the following (Graph)
8. If the order of matrix A is $m x n$ and B is $n x p$ then the order of $A B$ is \qquad 20. Discuss the nature of the solution of the quadratic equation $x^{2}-8 x+16=0$
9. If A is order of matrix 4×3 and B is order of 3×2 then the order of the product $\mathrm{AB}=$ \qquad
10. If $\mathrm{A}=\left[\begin{array}{ccc}5 & 4 & 3 \\ 1 & -7 & 9 \\ 3 & 8 & 2\end{array}\right]$ then find the transpose of $\mathrm{A}=$ \qquad

II Answer the following :

$$
5 \times 2=10
$$

11. If $\mathrm{A}=\left[\begin{array}{ccc}5 & 4 & -2 \\ 1 / 2 & 3 / 4 & \sqrt{2} \\ 1 & 9 & 4\end{array}\right], \mathrm{B}=\left[\begin{array}{ccc}-7 & 4 & -3 \\ 1 / 4 & 7 / 2 & 3 \\ 5 & -6 & 9\end{array}\right]$ find $4 \mathrm{~A}-3 \mathrm{~B}$

www.kalvikural.com

TIME : 1.30 RELATION \& FUNCTION - I MARKS : 50

A relation R is given by the set $\{(x, y) / y=x+3, x \in\{0,1,2,3,4,5\}\}$.
Determine its domain and range.
A function $f: R \rightarrow R$ is defined by
$f(x)= \begin{cases}2 x+7, & x<-2 \\ x^{2}-2, & -2 \leq x<3 \\ 3 x-2, & x \geq 3\end{cases}$
To find :
i) $f(4)+2 f(1)$
ii) $\frac{f(1)-3 f(4)}{f(-3)}$
20) A function of is defind by $f(x)=2 x-3$
i) find $\frac{f(0)+f(1)}{2}$
ii) find x such that $f(x)=0$

A function f is defind by $f(x)=3-2 x$. Find x such that $f\left(x^{2}\right)=(f(x))^{2}$

II Answer the following :
11) If $A=\{2,-2,3\}$ and $B=\{1,-4\}$ then find $A \times B$ and $B \times A$.
12) If $\mathrm{AxB}=\{(3,2),(3,4),(5,2)(5,4)\}$ then find A and B .
13) Let $A=\{1,2,3,4 \ldots \ldots . . ., 45\}$ and R be the relation as "is square of "on A. Write R as a subset of $\mathrm{A} \times \mathrm{A}$ also, find the domain and range of R .
14) A plane is flying at a speed of 500 km per hour. Express the distance d travelled by the plane as function of time t in hours.
15) Let $\mathrm{f}(\mathrm{x})=2 \mathrm{x}+5$. If $\mathrm{x} \neq 0$ then find $\frac{f(x+2)-f(2)}{x}$

www.kalvikural.com

X UNIVERSAL MAT HR. SEC. SCHOOL
UT 02/A\&C

TIME : 1.30
UNIT TEST - 2 EXAM NO -2 MATHEMATICS - A \& C
RELATION \& FUNCTION - II MARKS : 50

I Fill in the blanks:
$10 \times 1=10$

1. If $g=\{(1,1),(2,3),(3,5),(4,7)\}$ is a function given by $g(x)=\alpha x+\beta$ then the values of α and β are.. \qquad
2. If $n(A x B)=6$ and $A=\{1,3\}$ then $n(B)$. \qquad
3. The composition of fog denoted as the function gof $(x)=$. \qquad
4. A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is called \qquad function if distinct elements of A have distrinct images in B.
5. Let $A=\{1,2,3,4\}$ and $B=\{4,8,9,10\}$ a function $f: A \rightarrow B$ given by $\mathrm{f}=\{(1,4),(2,8),(3,9)(4,10)\}$ is a . \qquad
6. $a=\{a, b, p\} B=\{2,3\} C=\{p, q, r, s\}$ then $n[(A \cup C) \times B]$ is \qquad
Find: i) $f(-3)+f(2)$ ii) $2 f(4)+f(8)$

Let $A=\{-1,1\}$ and $B=\{0,2\}$ if the function $A \rightarrow B$ defined by $f(x)=a x+b$ an onto function? Find a and b.
19. Find the value of k, such that fog $=$ gof

Given that $\mathrm{f}(\mathrm{x})=3 \mathrm{x}+2, \mathrm{~g}(\mathrm{x})=6 \mathrm{x}-\mathrm{k}$
20. The distance S an object travels under the influence of gravity in time T seconds is given by $S(t)=\frac{1}{2} g t^{2}+a t+b$ where (g iss the acceleration due to gravity), a, b are constants . check if the function $S(t)$ is one - one .
21. Let $\mathrm{A}=\{1,2,3,4\}$ and $\mathrm{B}=\{2,5,8,11,14\}$ be two sets. Let f: $A \rightarrow B$ be a function given by $f(x)=3 x-1$. Represent this function.
a) an arrow diagram
b) a table
c) a set of ordered pairs
d) a graph
$\mathrm{F}(\mathrm{x})=\sqrt{2 x^{2}-5 x+3}$ as a composition of two functions.

www.kalvikural.com

X UNIVERSAL MAT HR. SEC. SCHOOL

UT 05/A\&C
TIME : 1.30

UNIT TEST - 5 EXAM NO-5
MATHEMATICS - A \& C MARKS : 50

I Fill in the blanks:
$10 \times 1=10$

1. The solution of the system $x+y-3 x=-6,-7 y+7 z=7,3 z=9$ is $\ldots \ldots$.
a) $x=1, y=2, z=3$
b) $x=-1, y=2, z=3$
c) $x=-1, y=-2, z=3$
d) $x=1, y=2, z=3$
2. If $(x-6)$ is the HCF of $x^{2}-2 x-24$ and $x^{2}-k x-6$ then the value of k is \qquad
a) 3
b) 5
c) 6
d) 8
3. $\frac{3 y-3}{y} \div \frac{7 y-7}{3 y^{2}}$ is $\ldots \ldots$
a) $\frac{9 y}{7}$
b) $\frac{9 y^{3}}{(21 y-21)}$
c) $\frac{21 y^{2}-42 y+21}{3 y^{3}}$
d) $\frac{7\left(y^{2}-2 y+1\right)}{y^{2}}$
4. The square root of $\frac{256 x^{8} y^{4} z^{10}}{25 x^{6} y^{6} z^{6}}$ is equal to
a) $\frac{16}{5}\left|\frac{x^{2} z^{4}}{y^{2}}\right|$
b) $16\left|\frac{y^{2}}{x^{2} z^{4}}\right|$
c) $\frac{16}{5}\left|\frac{y}{x z^{2}}\right|$
d) $\frac{16}{5}\left|\frac{x z^{2}}{y}\right|$
5. Which of the following should be added to make $x^{4}+64$ a perfect square
a) $4 x^{2}$
b) $16 x^{2}$
c) $8 x^{2}$
d) $-8 x^{2}$
6. The solution of $(2 x-1)^{2}=9$ is equal to
a) -1
b) 2
c) $-1,2$
d) none of these
7. Graph of a liner polynomial is a
a) straight line
b) circle
c) parabola
d) hyperbola

8. The number of points of intersection of the quadratic polynomial $x^{2}+4 x+4$
with the X axis is .
a) 0
b) 1
c) 0 or 1
d) 2

II Answer the following : (any 5)
$5 \times 2=10$
11. Find the square root of $9 x^{2}-24 x y+30 x z-40 y z+25 z^{2}+16 y^{2}$
12. Simplify : $\frac{4 x}{x^{2}-1}-\frac{x+1}{x-1}$
13. Simplify : $\frac{1}{x^{2}+2}$ from $\frac{2 x^{3}+x^{2}+3}{\left(x^{2}+2\right)^{2}}$
14. Find the quadratic equation whose sum and product of roots are $\frac{5}{3}, 4$
15. Solve : $x^{2}+2 x-2=0$ by formula method.
16. Determine the nature of roots for the quadratic equation $15 x^{2}+11 x+2=0$

III Answer the following: (any 4) $4 \times 5=20$
17. If the roots of the equation $\left(c^{2}-a b\right) x^{2}-2\left(a^{2}-b c\right) x+b^{2}-a c=0$ are real and equal prove that either $a=0$ (or) $a^{3}+b^{3}+c^{3}=3 a b c$.
18. Find the values of a and b if give polynomial is a perfect square.
$4 x^{4}-12 x^{3}+37 x^{2}+b x+a$
19. If $\mathrm{A}=\frac{x}{x+1}, \mathrm{~B}=\frac{1}{x+1}$ prove that $\frac{(A+B)^{2}+(A-B)^{2}}{A \div B}=\frac{2\left(x^{2}+1\right)}{x(x+1)^{2}}$
20. Simplify : $\frac{1}{x^{2}-5 x+6}+\frac{1}{x^{2}-3 x+2}-\frac{1}{x^{2}-8 x+15}$
21. A ball rools down a slope and travels a distance $d=t^{2}-0.75 t$ feet in t seconds. Find the time when the distance travelled by the ball is 11.25 feet.
9. The values of a and b if $4 x^{4}-24 x^{3}+76 x^{2}+a x+b$ is a perfect square are $\ldots .$.
a) 100,120
b) 10,12
c) $-120,100$
d) 12,10
10. $y^{2}+\frac{1}{y^{2}}$ is not equal to \ldots a) $\frac{y^{4}+1}{y^{2}} \quad$ b) $\left(y+\frac{1}{y}\right)^{2} \quad$ c) $\left(y-\frac{1}{y}\right)^{2}+2$ d) $\left(y+\frac{1}{y}\right)^{2}-2$

www.kalvikural.com

```
X UNIVERSAL MAT HR. SEC. SCHOOL
UT 04/A&C UNIT TEST - 4 EXAM NO -4 ALGEBRA - I
    TIME :1.30 MATHEMATICS - A & C MARKS : 50
```

I Fill in the blanks:
$10 \times 1=10$

1. The solution of the system $x+y-3 z=-6,-7 y+7 z=7,3 z=9$ is \qquad
a) $\mathrm{x}=1, \mathrm{y}=2, \mathrm{z}=3$
b) $x=-1, y=2, z=3$
c) $x=-1, y=-2, z=3$
d) $\mathrm{x}=1, \mathrm{y}=2, \mathrm{z}=3$
2. If $(x-6)$ is the $H C F$ of $x^{2}-2 x-24$ and $x^{2}-k x-6$ then the value of k is \qquad
a) 3
b) 5
c) 6
d) 8
3. \div is \qquad
a)
b)
c)
d)
4. The square root of is equal to \qquad $-$
a)
b) 16
c)
d)
5. Which of the following should be added to make $x^{4}+64$ a perfect square
\qquad
a) $4 x^{2}$
b) $16 x^{2}$
c) $8 x^{2}$
d) $-8 x^{2}$
6. The solution of $(2 x-1)^{2}=9$ is equal to \qquad $-$
a) -1
b) 2
c) $-1,2$
d) none of these
7. Graph of a linear polynomial is a \qquad
a) straight line
b) circle
c) parabola
d) hyperbola
8. The number of points of intersection of the quadratic polynomial $x^{2}+4 x+4$ with the X axis is \qquad -
a) 0
b) 1
c) 0 or 1
d) 2
9. The general form of linear equation in two variables x and y is \qquad
10. What is the value of x in $3=9$?

II Answer the following :
$5 \times 2=10$
11. Solve : $2 x-3 y=6 ; \quad x+y=1$
12. Find the LCM of $-9 a^{3} b^{2}, 12 a^{2} b^{2} c$
13. Reduce the rational expression to its lowest form
14. Find the excluded value :
15. Simplify : x

III Answer the following: (any 4) $4 \times 5=20$
16. Find the square root of $64 x^{4}-16 x^{3}+17 x^{2}-2 x+1$
17. Find the GCD of the polynomials $x^{3}+x^{2}-x+2$ and $2 x^{3}-5 x^{2}+5 x-3$
18. Solve : $x+2 y-z=5 ; x-y+z=-2 ;-5 x-4 y+z=-11$
19. If $x=$ and $y=$ find the values of $x^{2} y^{-2}$
20. Simplify : \div

IV Answer the following (Graph)
21. Discuss the nature of the solution of the quadratic equation :
$x^{2}-9 x+20=0$

Matrices and Rows

பாடம்
பாடத்தலைப்பு : 3.இயற்கணிதம் வகுப்பு : 10-D
தேதி : 10/10/2019, வியாழக் கிழமை.
மதிப்பெண்கள்
காலம்

கணிதம்
: 25
1:00 மணி

1) அனைத்து வினாக்களுக்கும் விடையளிக்கவும்:
1. $\left(\begin{array}{cc}a-b & 2 a+c \\ 2 a-b & 3 c+d\end{array}\right)=\left(\begin{array}{ll}1 & 5 \\ 0 & 2\end{array}\right)$ என்ற அணி சமன்பாட்டிலிருந்து $a, b, c, \quad d$ மதிப்புகளைக் காண்க.
2. $A=\left(\begin{array}{cc}\sqrt{7} & -3 \\ -\sqrt{5} & 2 \\ \sqrt{3} & -5\end{array}\right)$ எனில், $-A$-யின் நிறை நிரல் மாற்று அணியைக் காண்க
3. $A=\left(\begin{array}{ccc}5 & 2 & 2 \\ -\sqrt{17} & 0.7 & \frac{5}{2} \\ 8 & 3 & 1\end{array}\right)$ எனில், $\left(A^{T}\right)^{T}=A$ என்பதனைச் சரிபார்க்க.
4. $A=\left(\begin{array}{cc}1 & 9 \\ 3 & 4 \\ 8 & -3\end{array}\right), B=\left(\begin{array}{ll}5 & 7 \\ 3 & 3 \\ 1 & 0\end{array}\right)$ எனில், பின்வருவனவற்றைச் சரிபார்க்க. $A+B=B+A$
5. $A=\left(\begin{array}{cc}1 & 9 \\ 3 & 4 \\ 8 & -3\end{array}\right), B=\left(\begin{array}{cc}5 & 7 \\ 3 & 3 \\ 1 & 0\end{array}\right)$ எனில், பின்வருவனவற்றைச் சரிபார்க்க. $A+(-A)=(-A)+A=O$.
II) அனைத்து வினாக்களுக்கும் விடையளிக்கவும்: $3 \times 5=15$
6. $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ எனில், $A^{2}-(a+d) A=(b c-a d) I_{2}$ என நிறுவுக.
7. $A=\left(\begin{array}{ccc}5 & 2 & 9 \\ 1 & 2 & 8\end{array}\right), B=\left(\begin{array}{cc}1 & 7 \\ 1 & 2 \\ 5 & -1\end{array}\right)$ எனில், $(A B)^{T}=B^{T} A^{T}$ என்பதைச் சரிபார்க்கவும்.
8. $A=\left(\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right)$ எனில், $A^{2}-5 A+7 I_{2}=0$ என நிறுவுக.

www.kalvikural.com

UT 06/A\&C
TIME : 1.30

I Fill in the blanks:

$10 \times 1=10$

1. In $\Delta \mathrm{LMN}, \angle \mathrm{L}=60^{\circ}, \angle \mathrm{M}=50^{\circ}$. If $\Delta \mathrm{LMN} \sim \Delta \mathrm{PQR}$ then the value of $\angle \mathrm{R}$ is \qquad a) 40°
b) 70°
c) 30°
d) 110°
2. If $\triangle \mathrm{ABC}$ is an isosceles triangle with $\angle \mathrm{C}=90^{\circ}$ and $\mathrm{AC}=5 \mathrm{~cm}$ then
AB is \qquad a) 2.5 cm
b) 5 cm
c) 10 cm
d) $5 \sqrt{2} \mathrm{~cm}$
3. How many tangents can be drawn to the circle from an exterior point?
a) one
b) two
c) infinite
d) 0
4. If in $\triangle \mathrm{ABC} \mathrm{DE} \| \mathrm{BC} . \mathrm{AB}=3.6 \mathrm{~cm}, \mathrm{AC}=2.4 \mathrm{~cm}, \mathrm{AD}=2.1 \mathrm{~cm}$ then the length of AE is \qquad a) 1.4 cm
b) 1.8 cm
c) 1.2 cm
d) 1.05 cm
5. A tangent is perpendicular to the radius at the \qquad
a) centre
b) point of constant
c) infinity
d) chord
6. If in triangles ABC and $\mathrm{EDF} \frac{A B}{D E}=\frac{B C}{F D}$ then they will be similar, when
\qquad a) $\angle \mathrm{B}=\angle \mathrm{E}$
b) $\angle \mathrm{A}=\angle \mathrm{D}$
c) $\angle \mathrm{B}=\angle \mathrm{D}$
d) $\angle \mathrm{A}=\angle \mathrm{F}$
7. The two tangents from an external point P to a circle with centre at O are PA and PB . If $\angle \mathrm{APB}=70^{\circ}$ then the value of $\angle \mathrm{AOB}$ is \qquad

a) 100°
b) 110°
c) 120°
d) 130°
8. If QA and PB are perpendicular to AB . If $\mathrm{AO}=10 \mathrm{~cm}, \mathrm{BO}=6 \mathrm{~cm}$ and $\mathrm{PB}=9 \mathrm{~cm}$. Find AQ .

9. If $\triangle \mathrm{ABC}$ is similar to $\triangle \mathrm{DEF}$ such that $\mathrm{BC}=3 \mathrm{~cm}, \mathrm{EF}=4 \mathrm{~cm}$ and area of $\triangle \mathrm{ABC}=54 \mathrm{~cm}^{2}$. Find the area of $\triangle \mathrm{DEF}$.
10. If AD is the bisector of $\angle \mathrm{A}$. If $\mathrm{BD}=4 \mathrm{~cm}, \mathrm{DC}=3 \mathrm{~cm}$, and $\mathrm{AB}=6 \mathrm{~cm}$ find $A C$.
11. If radii of two concentric circles are 4 cm and 5 cm then find the length of the chord of one circle which is a tangent to the other circle ?
12. Find the length of the tangent drawn from a point whose distance from the centre of a circle is 5 cm and radius of the circle is 3 cm .
13. In a $\triangle A B C, A D$ is the bisector of $\angle A B C$. If $A B=8 \mathrm{~cm}, B D=6 \mathrm{~cm}$ and $\mathrm{DC}=3 \mathrm{~cm}$ then the length of side AC is \qquad
 (4006) G10 16
14. State and prove Alternate segment theorem.
15. State and prove Pythagoras theorem.
a) 6 cm
b) 4 cm
c) 3 cm
d) 8 cm
16. If $\mathrm{PR}=26 \mathrm{~cm}, \mathrm{QR}=24 \mathrm{~cm}, \angle \mathrm{PAQ}=90^{\circ}$,
$\mathrm{PA}=6 \mathrm{~cm}$ and $\mathrm{QA}=8 \mathrm{~cm}$. Find $\angle \mathrm{PQR}=$

17. A straight line that touches a circle at a common point is called a \qquad
18. State and prove Angle Bisector Theorem.
19. State and Prove Thales theorem.

IV Answer the following (Practical Geometry)
20. Construct a $\triangle \mathrm{PQR}$ such that $\mathrm{QR}=6.5 \mathrm{~cm}, \angle \mathrm{P}=60^{\circ}$ and the altitude from P to $Q R$ is of length 4.5 cm . [OR]
Construct a $\triangle \mathrm{PQR}$ which the base $\mathrm{PQ}=4.5 \mathrm{~cm}, \angle \mathrm{R}=35^{\circ}$ and the median from R to $R G$ is 6 cm .
a) radius
b) diameter
c) tangent
d) chord

www.kalvikural.com

UT 06/B\&D UNIT TEST - 6 EXAM NO-6
TIME : 1.30 MATHEMATICS - B \& D MARKS : 50

I Choose the best answer: $10 \times 1=10$

1. The perimeters of two similar triangles $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$ are 36 cm and 24 cm respectively. If $\mathrm{PQ}=10 \mathrm{~cm}$, then the length of AB is \qquad
a) $6 \frac{2}{3} \mathrm{~cm}$
b) $\frac{10 \sqrt{6}}{3} \mathrm{~cm}$
c) $66 \frac{2}{3} \mathrm{~cm}$
d) 15 cm
2. Two ploles of heights 6 m and 11 m stand vertically on a plane ground. If the distance between their feet is 12 m , what is the distance between
their tops?
a) 13 m
b) 14 m
c) 15 m
d) 12.8 m
3. In the given figure $\mathrm{PR}=26 \mathrm{~cm}, \mathrm{QR}=24 \mathrm{~cm}, \angle \mathrm{PAQ}=90^{\circ}$, $\mathrm{PA}=6 \mathrm{~cm}$ and $\mathrm{QA}=8 \mathrm{~cm}$. Find $\angle \mathrm{PQR}=$ \qquad

4. If in $\Delta \mathrm{ABC} \mathrm{DE} \| \mathrm{BC} . \mathrm{AB}=3.6 \mathrm{~cm}, \mathrm{AC}=2.4 \mathrm{~cm}, \mathrm{AD}=2.1 \mathrm{~cm}$ then the length of AE is \qquad a) 1.4 cm
b) 1.8 cm
c) 1.2 cm
d) 1.05 cm
5. How many tangents can be drawn to the circle from an exterior point?
a) one
b) two
c) infinite
d) 0

III Answer the following :
$4 \times 5=20$
11. State and Prove Thales theorem.
12. State and prove Angle Bisector Theorem.
13. State and prove Pythagoras theorem.
14. State and prove Alternate segment theorem.

IV Answer the following (Practical Geometry)
15. Construct a $\triangle \mathrm{PQR}$ in which $\mathrm{PQ}=8 \mathrm{~cm} \angle \mathrm{R}=60^{\circ}$ and the median RG from R to PQ is 5.8 cm . Find the length of the altitude from R to PQ .

[OR]

Construct a triangle $\triangle \mathrm{PQR}$ such that $\mathrm{QR}=5 \mathrm{~cm}, \angle \mathrm{P}=30^{\circ}$ and the altitude from P to QR is of length 4.2 cm .
16. Discuss the nature of solution of the quadratic equation $x^{2}-9 x+20=0$

[OR]

Discuss the nature of solution of the quadratic $(2 x-3)(x+2)=0$
6. In $\triangle \mathrm{LMN}, \angle \mathrm{L}=60^{\circ}, \angle \mathrm{M}=50^{\circ}$. If $\triangle \mathrm{LMN} \sim \Delta \mathrm{PQR}$ then the value of
$\angle \mathrm{R}$ is \qquad a) 40°
b) 70°
c) 30°
d) 110°
7. If $\triangle \mathrm{ABC}$ is an isosceles triangle with $\angle \mathrm{C}=90^{\circ}$ and $\mathrm{AC}=5 \mathrm{~cm}$ then
AB is \qquad a) 2.5 cm
b) 5 cm
c) 10 cm
d) $5 \sqrt{2} \mathrm{~cm}$
8. In a $\triangle A B C, A D$ is the bisector of $\angle A B C$.If $A B=8 \mathrm{~cm}, B D=6 \mathrm{~cm}$ and $D C=3 \mathrm{~cm}$ then the length of side AC is \qquad a) 6 cm
b) 4 cm c$) 3 \mathrm{~cm} \quad$ d) 8 cm
9. A tangent is perpendicular to the radius at the \qquad
a) centre
b) point of constant
c) infinity
d) chord
10. The two tangents from an external point P to a circle with centre at O are PA and PB . If $\angle \mathrm{APB}=70^{\circ}$ then the value of $\angle \mathrm{AOB}$ is \qquad
a) 100°
b) 110°
c) 120°
d) 130°

www.kalvikural.com

X
UT 03/B\&D
TIME : 1.30

UNIVERSAL MAT HR. SEC. SCHOOL

UNIT TEST - 3 EXAM NO-3 MATHEMATICS - B \& D MATRICES
MARKS : 50

I Fill in the blanks:

$$
10 \times 1=10
$$

1. If $A=2 \times 2$ matrix and $B=3 \times 4$ matrix how many columns does $A B$ have \qquad
2. If number of columns and rows are not equal in a matrix then it is said to be a \qquad
3. If $A=\left[\begin{array}{cccc}1 & 3 & 5 & 7 \\ 2 & 4 & 6 & 8 \\ 9 & 11 & 13 & 15\end{array}\right]$ then the order of the matrix $A^{T}=$ \qquad
4. Transpose of a column matrix is \qquad -
5. Find the matrix X if $2 X+\left[\begin{array}{ll}1 & 3 \\ 5 & 7\end{array}\right]=\left[\begin{array}{ll}5 & 7 \\ 9 & 5\end{array}\right]$ is \qquad -
6. A matrix is said to be a \qquad if it has only one column and any number of rows.
7. A diagonal matrix in which all the leading diagonal elements are equal is called a \qquad -
8. If order of $A=4 \times 3$ and order of $B=3 \times 2$ then the order of the product matrix $\mathrm{AB}=$ \qquad -
9. If A is order of 4×2 and B is order of 2×2 then the order of $\mathrm{AB}=$ \qquad
$4 \times 5=20$
III Answer the following :
10. Solve for $\mathrm{x}, \mathrm{y}\left[\begin{array}{l}x^{2} \\ y^{2}\end{array}\right]+2\left[\begin{array}{c}-2 x \\ -y\end{array}\right]=\left[\begin{array}{l}5 \\ 8\end{array}\right]$
11. If $A=\left[\begin{array}{cc}1 & 1 \\ -1 & 3\end{array}\right], \quad B=\left[\begin{array}{cc}1 & 2 \\ -4 & 2\end{array}\right], C=\left[\begin{array}{cc}-7 & 6 \\ 3 & 2\end{array}\right]$ verify that $A(B+C)=A B+A C$
12. If $A=\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]$ show that $A^{2}-5 A+7 I_{2}=0$
13. If $A=\left[\begin{array}{lll}5 & 2 & 9 \\ 1 & 2 & 8\end{array}\right] B=\left[\begin{array}{cc}1 & 7 \\ 1 & 2 \\ 5 & -1\end{array}\right]$ verify that $(A B)^{T}=B^{T} A^{T}$
$1 \times 10=10$
x
14. Verify that $A^{2}=I$ when $A=\left[\begin{array}{cc}5 & -4 \\ 6 & 5\end{array}\right]$
15. If a matrix has 18 elements, what are the possible orders it can have? What if it has 6 elements.?
16. If $A=\left[\begin{array}{ll}2 & 5 \\ 4 & 3\end{array}\right], B=\left[\begin{array}{rr}1 & -3 \\ 2 & 5\end{array}\right]$ find $A B, B A$ and check if $A B=B A$?
17. If $A=\left[\begin{array}{cc}1 & 9 \\ 3 & 4 \\ 8 & -3\end{array}\right], B=\left[\begin{array}{ll}5 & 7 \\ 3 & 3 \\ 1 & 0\end{array}\right]$ then verify that $A+B=B+A$
18. Discuss the nature of the solution of the quadratic equation $x^{2}+2 x+5=0$

II Answer the following :

$$
5 \times 2=10
$$

11. If $\mathrm{A}=\left[\begin{array}{ccc}5 & 2 & 2 \\ -\sqrt{17} & 0.7 & 5 / 2 \\ 8 & 3 & 1\end{array}\right]$ then $\operatorname{verify}\left(\mathrm{A}^{\mathrm{T}}\right)^{\mathrm{T}}=\mathrm{A}$.

www.kalvikural.com

X UNIVERSAL MAT HR. SEC. SCHOOL
UT 08/A\&C
UNIT TEST - 8 EXAM NO-8
TIME : 1.30 MATHEMATICS - A \& C MARKS : 50
I Answer the following : $7 \times 2=14$

1. The volumes of two cones of the same radius are $3600 \mathrm{~cm}^{3}$ and $5040 \mathrm{~cm}^{3}$. Find the ratio of heights.
2. If the ratio of radii of two spheres is $4: 7$. Find the ratio of their volumes.
3. A solid sphere and a solid hemisphere have equal total surface area. Prove that the ratio of their volumes is.
4. A right circular cylinder just enclose a sphere of radius r units. Calculate the CSA of cylinder.
5. A metallic sphere of radius 16 cm is melted and recast into small spheres each of radius 2 cm . How many small spheres can be obtained?
6. A cone of height 24 cm is made up of modeling clay. A child reshapes it in the form of a cylinder of same radius as cone. Find the height of cylinder
7. A conical flask is full of water. The flask has base radius r units and height h units, the water poured into a cylindrical flask of base radius xr units. Find the height of water in the cylindrical flask.

II Answer the following : (any 4) $4 \times 5=20$

$$
4 \times 5=20
$$

8. A toy is in the shape of a cylinder surmounted by a hemisphere. The height of the joy is 25 cm . Find the TSA of the joy if its common diameter is 12 cm .
9. A vessel is in the form of a hemispheral bowl mounted by a hollow cylinder. The diameter is 14 cm and the height of the vessel is 13 cm . Find the capacity of the vessel.
10. A capsule is in the shape of a cylinder with two hemisphere stuck to each of its ends.If the length of the entire caosule is 12 mm and the diameter of the capsule is 3 mm , how much medicine it can hdd?
11. Water is flowing at the rate of 15 km per hour through a pipe of diameter 14 cm into a rectangular tank which is 50 m long and 44 m wide. Find the time in which the level of water in the tanks will rise by 21 cm .
12. A solid right circular cone of diameter 14 cm and height 8 cm is melted to form a hollow sphere. If the ecxternal diameter of the sphere is 19 cm . Find the internal diameter.

III Answer the following (Practical Geometry and Graph)2 $\times 8=16$
13. Draw a triangle ABC of base $\mathrm{BC}=8 \mathrm{~cm}, \angle \mathrm{~A}=60^{\circ}$ and the bisector of $\angle \mathrm{A}$ meets BC at D such that $\mathrm{BD}=6 \mathrm{~cm}$.
14. Draw the graph of $y=x^{2}+4 x+3$ and hence find the roots of $x^{2}+x+1=0$

UT 08/B\&D
UNIT TEST - 8 EXAM NO-8
TIME : 1.30 MATHEMATICS - B \& D MARKS : 50

I Choose the best answer: $10 \times 1=10$

1. The height of a right circular cone whose radius is 5 cm and slant height is 13 cm will be \qquad
c) 13 cm
d) 5 cm
2. If the radius of the base of a cone is tripled and the height is doubled then the volume is \qquad 8 times
c) made 12 times
d) unchanged
3. The total surface area of a hemi-sphere is how much times the square of its radius \qquad
a) π
b) 4π
c) 3π
d) 2π
4. The curved surface area of a right circular cone of height 15 cm and base diameter 16 cm is ___ a) $60 \pi \mathrm{~cm}^{2} \quad$ b) $68 \pi \mathrm{~cm}^{2} \quad$ c) $120 \pi \mathrm{~cm}^{2}$ d) $136 \pi \mathrm{~cm}^{2}$
5. A solid sphere of radius $\times \mathrm{cm}$ is melted and cast into a shape of a solid cone of same radius. The height of the cone is \qquad
a) $3 x \mathrm{~cm}$
b) x cm
c) $4 x \mathrm{~cm}$
d) $2 \times \mathrm{cm}$
6. A shuttle cock used for playing badminton has the shape of the combination of \qquad
a) a cylinder and a sphere b) a hemisphere and a cone
c) a sphere and a cone
d) frustum of a cone and a hemisphere
7. The volume (in cm^{3}) of the greatest sphere that can be cut off from a cylindrical \log of wood of base radius 1 cm and height 5 cm is \qquad
a) $4 / 3 \pi$
b) $10 / 3 \pi$
c) 5π
d) $20 / 3 \pi$
8. The height and radius of the cone of which thet frustum is a part are h_{1} units and r_{1} units respectively. Height of the frustum is h_{2} units and radius of the smaller base is r_{2} units. If $h_{2}: h_{1}=1: 2$ then $r_{2}: r_{1}$ is \qquad
$x=$
a) $1: 3$
b) $1: 2$
c) $2: 1$
d) $3: 1$
9. The ratio of the volumes of a cylinder, a cone and a sphere, if each has the same diameter and same height is \qquad
a) $1: 2: 3$
b) $2: 1: 3$
c) $1: 3: 2$
d) $3: 1: 2$
10. If the radius of the base of a right circular cylinder is halved keeping the same height, then the ratio of the volume of the cylinder thus obtained to the volume of original cylinder is
\qquad d) $1: 8$
a) $1: 2$
b) $1: 4$
c) $1: 6$

II Answer the following : (any 5)

$$
5 \times 2=10
$$

11. The CSA of a right circular cylinder f height 14 cm is $88 \mathrm{~cm}^{2}$. Find the diameter of the cylinder.
12. Find the diameter of a sphere whose surface area is $154 \mathrm{~m}^{2}$
13. If the ratio of radii of two spheres is 4:7 find the ratio of their volumes.

www.kalvikural.com

X UNIVERSAL MAT HR. SEC. SCHOOL
UT 09/A\&C
UNIT TEST - 9 EXAM NO-9
TIME : 1.30
MATHEMATICS - A \& C
MARKS : 50
I Fill in the blanks
$8 \times 1=8$

1. If $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is a bijective function and if $\mathrm{n}(\mathrm{B})=7$, then $\mathrm{n}(\mathrm{A})=$ \qquad
2. If $n(A \times B)=6$ and $A=\{1,3\}$ then $n(B)=$ \qquad
3. If numbers of columns and rows are not equal in a matrix then it is said to be \qquad _
4. The solution of $(2 x-1)^{2}=9$ is equal to \qquad -
5. $\frac{3 y-3}{y} \div \frac{7 y-7}{3 y^{2}}=$ \qquad
6. If $f(x)=2 x^{2}$ and $g(x)=\frac{1}{3 x}$ then fog $=$ \qquad $-$
7. If $(x-6)$ is the HCF of $x^{2}-2 x-24$ and $x^{2}-k x-6$ then the value of k is \qquad -
8. A tangent is perpendicular to the radius at the \qquad _

III Answer the following :
16. A function $f:[-5,9) \rightarrow R$ is defined as
$f(x)= \begin{cases}6 x+1, & -5 \leq x<2 \\ 5 x^{2}+1, & 2 \leq x<6 \\ 3 x-4, & 6 \leq x \leq 9\end{cases}$
Find:
i) $f(-3)+f(2)$
ii) $2 f(4)+f(8)$
17. If $\mathrm{A}=\left[\begin{array}{cc}1 & 1 \\ -1 & 3\end{array}\right] \mathrm{B}=\left[\begin{array}{cc}1 & 2 \\ -4 & 2\end{array}\right], \quad \mathrm{C}=\left[\begin{array}{cc}-7 & 6 \\ 3 & 2\end{array}\right]$ verify that $\mathrm{A}(\mathrm{B}+\mathrm{C})=\mathrm{AB}+\mathrm{AC}$
18. Find the GCD of the polynomials $x^{3}+x^{2}-x+2$ and $2 x^{3}-5 x^{2}+5 x-3$
19. Find the values of a and b if give polynomial is a perfect square.
$4 x^{4}-12 x^{3}+37 x^{2}+b x+a$

IV Answer the following (Graph)
$1 \times 8=8$
20. Draw the graph of $y=x^{2}+x-2$ and hence solve $x^{2}+x-2=0$
[OR]
Draw the graph of $y=x^{2}-4 x+3$ and use it to solve $x^{2}-6 x+9=0$
9. Let $\mathrm{f}(\mathrm{x})=2 \mathrm{x}+5$. If $\mathrm{x} \neq 0$ then find $\frac{f(x+2)-f(2)}{x}$

$$
7 \times 2=14
$$

10. Show that function $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ defined by $\mathrm{f}(\mathrm{x})=2 \mathrm{x}-1$ is one - one but not onto.
11. If $A=\left[\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right], B=\left[\begin{array}{ll}2 & 0 \\ 1 & 3\end{array}\right]$ find $A b$ and $B A$. Check if $A B=B A$?
12. If $A=\left[\begin{array}{ccc}5 & 2 & 2 \\ -\sqrt{17} & 0.7 & 5 / 2 \\ 8 & 3 & 1\end{array}\right]$ then verify $\left(A^{T}\right)^{T}=A$
13. Subtract $\frac{1}{x^{2}+2}$ from $\frac{2 x^{3}+x^{2}+3}{\left(x^{2}+2\right)^{2}}$
14. Simplify : $\frac{4 x}{x^{2}-1}-\frac{x+1}{x-1}$
15. Define : Function

UT 09/B\&D
TIME : 1.30

UNIVERSAL MAT HR. SEC. SCHOOL
UNIT TEST - 9 EXAM NO-9

I Choose the best answer :

1. If $n(A \times B)=6$ and $A=\{1,3\}$ then $n(B)=$ \qquad $10 \times 1=10$
a) 1
b) 2
c) 3
d) 6
2. If $\{(a, 8),(6, b)\}$ represents an identify function then the value of a
and b respectively.
a) $(8,6)$
b) $(8,8)$
c) $(6,8)$
d) $(6,6)$
3. The square root of $\frac{256 x^{8} y^{4} z^{10}}{25 x^{6} y^{6} z^{6}}$ \qquad
a) $\frac{16}{5}\left|\frac{x^{2} z^{4}}{y^{2}}\right|$
b) $16\left|\frac{y^{2}}{x^{2} z^{4}}\right|$
c) $\frac{16}{5}\left|\frac{y}{x z^{2}}\right|$
d) $\frac{16}{5}\left|\frac{x z^{2}}{y}\right|$
4. In a $\triangle \mathrm{ABC}, \mathrm{AD} \perp \angle \mathrm{ABC}$. If $\mathrm{AB}=8 \mathrm{~cm}, \mathrm{BD}=6 \mathrm{~cm}$, and $\mathrm{DC}=3 \mathrm{~cm}$ the length of side AC \qquad $\begin{array}{ll}\text { a) } 6 \mathrm{~cm} & \text { b) } 4 \mathrm{~cm}\end{array}$
c) 3 cm
d) 8 cm
5. Find the matrix x if $2 \mathrm{X}+\left[\begin{array}{ll}1 & 3 \\ 5 & 7\end{array}\right]=\left[\begin{array}{ll}5 & 7 \\ 9 & 5\end{array}\right]$ is \qquad -
6. A tangent is perpendicular to the radius at the \qquad
a) centre
b) point of constant
c) infinity
d) chord
7. If $(x-6)$ is the HCF of $x^{2}-2 x-24$ and $x^{2}-K x-6$ then the value of $K=$ \qquad
a) 3
b) 5
c) 6
d) 8
8. $f(x)=(x+1)^{3}-(x-1)^{3}$ represents a function which is \qquad -
a) linear
b) cubic
c) reciprocal
d) quadratic
9. If $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is a bijective function and if $\mathrm{n}(\mathrm{B})=7$ then $\mathrm{n}(\mathrm{A})=$ \qquad
a) 7
b) 49
c) 1
d) 14
10. Graph of a linear polynomial is a \qquad
a) straight line
b) circle
c) parabola
d) hyperbola

II Answer the following :

$$
6 \times 2=12
$$

11. If $A=\{1,3,5\}$ and $B=\{2,3\}$ then find $A \times B$ and $B \times A$.
12. Find the value of K, if $f(x)=2 x-K, g(x)=4 x+5$ then find fog $=$ gof.
13. Simplify : $\frac{5 t^{3}}{4 t-8} \quad \mathrm{x} \frac{6 t-12}{10 t}$
14. If $A=\left[\begin{array}{ccc}5 & 2 & 2 \\ -\sqrt{17} & 0.7 & 5 / 2 \\ 8 & 3 & 1\end{array}\right]$ then verify $\left(A^{T}\right)^{T}=A$
15. If $\mathrm{A}=\left[\begin{array}{ll}2 & 5 \\ 4 & 3\end{array}\right]$, $\mathrm{B}=\left[\begin{array}{cc}1 & -3 \\ 2 & 5\end{array}\right]$ find AB and BA . Check if $\mathrm{AB}=\mathrm{BA}$?
16. Find the square root: $256(\mathrm{x}-\mathrm{a})^{8}(\mathrm{x}-\mathrm{b})^{4}(\mathrm{x}-\mathrm{c})^{16}(\mathrm{x}-\mathrm{d})^{20}$

III Answer the following :
17. If $9 x^{4}+12 x^{3}+28 x^{2}+a x+b$ is a perfect square. Find the value of a and b.
18. If $A=\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]$ show that $A^{2}-5 A+7 I_{2}=0$
19. A function $f: R \rightarrow R$ is defined by
$f(x)= \begin{cases}2 x+7, & x \leq-2 \\ x^{2}-2, & -2 \leq x<3 \\ 3 x-2, & x \geq 3\end{cases}$
Find, i) f(4)+2f(1)
ii) $\frac{f(1)-3 f(4)}{f(-3)}$
20. Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ be a function defined by $\mathrm{f}(\mathrm{x})=\frac{x}{2}-1$ where $\mathrm{A}=\{2,4,6,10,12\}$ $B=\{0,1,2,4,5,9\}$ represent f by i) A set of ordered pairs
ii) a table
iii) an arrow diagram
iv) a graph

IV Answer the following (Graph) $1 \times 8=8$
21. Draw the graph of $y=x^{2}-4 x+3$ and use it to solve $x^{2}-6 x+9=0$

[OR]

Draw the graph of $y=x^{2}+3 x-4$ and hence solve $x^{2}+3 x-4=0$

www.kalvikural.com

X UNIVERSAL MAT HR. SEC. SCHOOL

UT 10/A\&C
TIME : 1.30

UNIT TEST - 10 EXAM NO - 10
MATHEMATICS - A \& C MARKS : 50

I Choose the correct answer :

1. The range of the data $8,8,8,8,8$ \qquad 8 is \qquad
a) 0
b) 1
c) 8
d) 3
2. Variance of first 20 natural numbers is \qquad
a) 32.25
b) 44.25
c) 33.25
d) 30
3. If the mean and co-efficient of variation of a data are 4 and 87.5% then
the S.D is \qquad a) 3.5
b) 3
c) 4.5
d) 2.5
4. The mean of 100 observations is 40 and their S.D is 3 . The sum of squares of all deviations is \qquad
a) 40000
b) 160900
c) 160000
d) 30000
5. Probability of sure event is \qquad
a) 0
b) 1
c) 0.1
d) 2
6. A page is selected at random from a book. The probability that the digit at units place of the page number choosen is less than 7 is \qquad
a) $3 / 10$
b) $7 / 10$
c) $3 / 9$
d) $7 / 9$
7. If a letter is choosen at random from the English alphabets $\{\mathrm{a}, \mathrm{b}, \ldots, \mathrm{z}\}$ then the probability that the letter chosen precedes x .
a) $12 / 13$
b) $1 / 13$
c) $23 / 16$
d) $3 / 26$
8. If the S.D of x, y, z is p then the S.D of $3 x+5,3 y+5,3 x+z$ is \qquad
a) $3 p+5$
b) $3 p$
c) $p+5$
d) $9 p+15$

II Answer the following: $7 \times 2=14$
9. Find the range and co-efficient of range: $63,89,98,125,79,108,117,68$
10. The range of a set of data is 13.67 and the largest value is 70.08 . Find the smallest value.
11. Find the standard deviation of first 21 natural numbers.
12. The mean of a data is 25.6 and its co-efficient of variation 18.75. Find the standard deviation.
13. If $\mathrm{n}=5, \bar{x}=6, \Sigma \mathrm{x}^{2}=765$ then calculate the co-efficient of variation.
14. If $\mathrm{P}(\mathrm{A})=0.37, \mathrm{P}(\mathrm{B})=0.42, \mathrm{P}(\mathrm{A} \cap \mathrm{B})=0.09$ then find $\mathrm{P}(\mathrm{A} \cup \mathrm{B})$.
15. Two coins are tossed together. Waht is the probability of getting different faces on the coins?

III Answer the following : (any 4)

$$
4 \times 5=20
$$

16. Find the mean and variance of the first ' n ' natural numbers.
17. The marks scored by the students in a sliptest are given below:

x	4	6	8	10	12
f	7	3	5	9	5

Find the standard deviation.
18. Find the co-efficient of $24,26,33,37,29,31$.
19. Two dice are rolled. Find the probability that the sum of outcomes is
a) equal to 4
b) greater than 10
c) less than 13
20. A card is drawn from of 52 cards. Find the probability of getting a king or a heart or a red card.

IV Answer the following (Graph)

$$
1 \times 8=8
$$

21. Draw the graph of $y=x^{2}+3 x+2$ and use it solve $x^{2}+2 x+1=0$.

[OR]

Draw the graph of $y=2 x^{2}-3 x-5$ and hence solve $2 x^{2}-4 x-6=0$

