X UT (UNIVERSAL MAT HR. SEC. SCHOOL 03/A&C UNIT TEST - 3 EXAM NO -3	
-	MATHEMATICS - A & C	
TI	ME : 1.30 MATRICES MARKS : 50	12. Define diagonal matrix.
I 1.	Fill in the blanks: $10 \ge 10$ If A = $2 \ge 2$ matrix and B = $3 \ge 4$ matrix how many columns does AB	13. If A = $\begin{bmatrix} 5 & 2 & 2 \\ -\sqrt{17} & 0.7 & 5/2 \\ 8 & 3 & 1 \end{bmatrix}$ then verify $(A^{T})^{T} = A$
2.	have If number of columns and rows are not equal in a matrix then it is said to be a	14. If $A = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 0 \\ 1 & 3 \end{bmatrix}$ find AB, BA and check if AB = BA?
		15. Construct a 3 x 3 matrix whose elements are given by $a_{ij} = i - 2j $
3.	If $A = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 2 & 4 & 6 & 8 \\ 9 & 11 & 13 & 15 \end{bmatrix}$ then the order of the matrix $A^{T} = $	III Answer the following : $4 \times 5 = 20$
4.	Transpose of a column matrix is	
5.	Find the matrix X if $2X + \begin{bmatrix} 1 & 3 \\ 5 & 7 \end{bmatrix} = \begin{bmatrix} 5 & 7 \\ 9 & 5 \end{bmatrix}$ is	16. If $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$ show that $A^2 - 5A + 7I_2 = 0$
6.	A square matrix in which elements in the leading diagonal are all "1"	17. If $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & -1 & 1 \end{bmatrix} B = \begin{bmatrix} 2 & -1 \\ -1 & 4 \\ 0 & 2 \end{bmatrix}$ show that $(AB)^{T} = B^{T} A^{T}$
7.	and rest are all zero is called an matrix. $(8 \ 9 \ 4 \ 3)$	18. If $A = \begin{bmatrix} 1 & 1 \\ -1 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 2 \\ -4 & 2 \end{bmatrix}$, $C = \begin{bmatrix} -7 & 6 \\ 3 & 2 \end{bmatrix}$ verify that $A(B+C) = AB + AC$
	If $A = \begin{pmatrix} 8 & 9 & 4 & 3 \\ -1 & \sqrt{7} & \sqrt{3}/2 & 5 \end{pmatrix}$ write the element of $a_{43} =$	19. Find the value of x and y. If $x \begin{bmatrix} 4 \\ -3 \end{bmatrix} + y \begin{bmatrix} -2 \\ 3 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix}$
	$ \begin{bmatrix} 1 & 4 & 3 & 0 \\ 1 & 4 & 3 & 0 \\ 6 & 8 & -11 & 1 \end{bmatrix} $ while the element of $u_{43} = _$	IV Answer the following (Graph) $1 \ge 10$
8.	If the order of matrix A is m x n and B is n x p then the order of AB 56060 All	20. Discuss the nature of the solution of the quadratic equation $x^2 - 8x + 16 = 0$
9.	If A is order of matrix 4×3 and B is order of 3×2 then the order of	= 20. Discuss the nature of the solution of the quadratic equation $x = 0x + 10 = 0$
).	the product $AB = $	
10.	If $A = \begin{bmatrix} 5 & 4 & 3 \\ 1 & -7 & 9 \\ 3 & 8 & 2 \end{bmatrix}$ then find the transpose of $A =$	*****
Π	Answer the following : $5 \ge 2 = 10$	
11.	If $A = \begin{bmatrix} 5 & 4 & -2 \\ 1/2 & 3/4 & \sqrt{2} \\ 1 & 9 & 4 \end{bmatrix}$, $B = \begin{bmatrix} -7 & 4 & -3 \\ 1/4 & 7/2 & 3 \\ 5 & -6 & 9 \end{bmatrix}$ find $4 A - 3B$	

X UNIVERSAL MAT HR. SEC. SCHOOL	
UT-01/AC UNIT TEST - I EXAM NO - 1	
MATHEMATICS - A & C	IIIAnswer the following : $6 \ge 30$
TIME : 1.30 RELATION & FUNCTION - I MARKS : 50	16) If A={5,6}, B= {4,5,6}, C={5,6,7} show that A x A = (B x B) n (C x C)
I Fill in the blanks: $10 \times 1 = 10$	17) Given $f(x) = 2x - x^2$, find i) $f(1)$ ii) $f(x+1)$ iii) $f(x) + f(1)$
1) If $n(AxB) = 6$ and $A = \{1,3\}$ then $n(B) = \dots$	18) A relation R is given by the set { $(x,y) / y = x + 3, x \in \{0, 1, 2, 3, 4, 5\}$ }.
2) If the ordered pairs $(a+2, 4)$ and $(5, 2a+b)$ are equal then (a,b) is	Determine its domain and range.
3) If $f(x)=2x^2$ and $g(x) = \frac{1}{3x}$ then fog is	19) A function $f : R \rightarrow R$ is defined by
4) If $f:A \rightarrow B$ is a bijective function and if $n(B)=7$, then $n(A)=$	
5) $A=\{a,b,p\},B=\{2,3\},C=\{p,q,r,s\}$ then $n[(AUC \times B] \text{ is})$	$f(x) = \begin{cases} x^2 - 2, & -2 \le x < 3 \end{cases}$
6) If $\{(a,8),(6,b)$ represent an identity function, then value of a and b are	$3x-2, x \ge 3$
7) The range of the relation $R = \{(x, x^2) / x \text{ is a prime number } <13\}$ is	To find : i) $f(4) + 2 f(1)$ ii) $\frac{f(1)-3f(4)}{f(-3)}$
8) If $f(a) = b$, then b is called "image" of a under f and a is calledof b.	20) A function of is defind by $f(x) = 2x - 3$
9) A relation which contains no element is called a	
10) A function $f:A \rightarrow B$ is said to beif the range of f is equal to the $co - domain of f$.	i) find $\frac{f(0)+f(1)}{2}$ 21) A function f is defind by $f(x) = 3 - 2x$. Find x such that $f(x^2) = (f(x))^2$
II Answer the following : $5 \times 2 = 10$	*******
11) If $A=\{2,-2,3\}$ and $B=\{1,-4\}$ then find $A \times B$ and $B \times A$.	ण् भितिष्ये 🛛 🗋 🥐 <
12) If $AxB = \{(3,2), (3,4), (5,2), (5,4)\}$ then find A and B.	
13) Let $A = \{1, 2, 3, 4, \dots, 45\}$ and R be the relation as "is square of "on A. Write R	
as a subset of $A \times A$ also, find the domain and range of R .	
14) A plane is flying at a speed of 500 km per hour. Express the distance d	
travelled by the plane as function of time t in hours.	
15) Let $f(x) = 2x + 5$. If $x \neq 0$ then find $\frac{f(x+2) - f(2)}{x}$	
15) Let $f(x) = 2x + 5$. If $x \neq 0$ then find $\frac{1}{x}$	

X UT	UNIVERSAL MAT HR. SEC. SCHOOL 02/A&C UNIT TEST - 2 EXAM NO -2			
T	MATHEMATICS - A & C	14.	Find fog and gof when $f(x) = x$	3+x and g(x) = x-4
11	ME: 1.30 RELATION & FUNCTION - II MARKS : 50	- 15.	Find fof $(k) = 5$, where $f(k) = 5$	= 2k - 1
Ι	Fill in the blanks: $10 \ge 10 = 10$	III	Answer the following :	6 x 5 = 30
1.	If g ={(1,1),(2,3),(3,5),(4,7)} is a function given by $g(x)=\alpha x+\beta$ then the	16.	If $f(x) = x-1$, $g(x)=3x+1$, and	$h(x)=x^2$ prove that (fog) oh = fo (goh)
	values of α and β are	17.	A function f:[-5,9] \rightarrow R is define	1 as
2.	If $n (AxB) = 6$ and $A = \{1,3\}$ then $n(B)$		6x+1 ,	$-5 \le x < 2$
3.	The composition of fog denoted as the function gof (x)=		$f(x) = \begin{cases} 5x^2 - 1, \end{cases}$	2 ≤x<6
4.	A function $f:A \rightarrow B$ is called function if distinct elements of A have	D OB ALO		
	distrinct images in B.		(3x -4 ,	$6 \le x \le 9$
5.	Let A = $\{1,2,3,4\}$ and B= $\{4,8,9,10\}$ a function f:A \rightarrow B given by	- s	Find: i)f(-3)+f(2)	ii)2f(4) +f (8)
	$f = \{(1,4),(2,8),(3,9),(4,10)\}$ is a	18. 5		he function $A \rightarrow B$ defined by $f(x) = ax + b$
6.	$a = \{a,b,p\} B = \{2,3\} C = \{p,q,r,s\} \text{ then } n[(A \cup C) \times B] \text{ is } \dots$	Sug /	an onto function ? Find a and b).
7.	Let n(A)=m and n(B)=n then the total number of non – empty relations that can be defined from A to B is	19.	Find the value of k, such that for C_{k+1}	
8.	If there are 1024 relations from a set $A = \{1, 2, 3, 4, 5\}$ to set B, them the number of element in B is	20.	Given that $f(x) = 3x+2, g(x)=6x$ The distance S an object travels	K - K under the influence of gravity in time T
9.	$F(x)=(x+1)^3-(x-1)^3$ represents a function which is	10	seconds is given by $S(t) = \frac{1}{2}gt$	a^{2} +at+b where (g iss the acceleration due to
10.	Let $f(x) = \sqrt{1 + x^2}$ then	லவி அமுது	the.	
			gravity), a,b are constants. che	ck if the function S(t) is one – one.
II	Answer the following : $5 \ge 2 = 10$	21.	Let $A = \{ 1, 2, 3, 4 \}$ and $B =$	= { 2, 5, 8, 11, 14 } be two sets. Let
11.	Show that function $f: N \rightarrow N$ defined by $f(x)=2x - 1$ is one - one but not onto.		$f: A \rightarrow B$ be a function given	by $f(x) = 3x - 1$. Represent this function.
12.	Represent the function $f = \{(1.2), (2,2), (3,2), (4,3), (5,4)\}$ through		a) an arrow diagram	b) a table
	i)an arrow diagram ii)a table		c) a set of ordered pairs	d) a graph
13.	Represent the function		· •	*****
	$F(x) = \sqrt{2x^2 - 5x + 3}$ as a composition of two functions.		<u> </u>	

10TH MATHS

www.kalvikural.com

	UN 05/A&C IME : 1.30	UNIT TEST	AT HR. SEC. S - 5 EXAM N ATICS - A & C	O -5	.RKS : 50	
Ι	Fill in the blank	s:			10 x 1 = 10	
1.	The solution of th	ne system x + y - 2	3x = -6, -7y + 7z	z = 7, 3z = 9	is	
	a) $x = 1, y = 2, z =$	= 3	b) $x = -1, y = 2$	2, z = 3		
	c) $x = -1, y = -2$	2, z = 3	d) x = 1, y = 2,	z = 3		
2.	If $(x - 6)$ is the H	$CF of x^2 - 2x - 24$	4 and $x^2 - kx - 6$ th	nen the value	e of k is	
	a) 3	b) 5	c) 6	d) 8		
3.	$\frac{3y-3}{y} \div \frac{7y-7}{3y^2}$ is					605 aLG
	a) $\frac{9y}{7}$	b) $\frac{9y^3}{(21y-21)}$	c) $\frac{21y^2 - 42y + 2}{3y^3}$	<u>1</u>	d) $\frac{7(y^2 - 2y + 1)}{y^2}$	
4.	The square root o	$f\frac{256 x^8 y^4 z^{10}}{25 x^6 y^6 z^6} \text{ is equ}$	al to			512
	a) $\frac{16}{5} \left \frac{x^2 z^4}{y^2} \right $	b) 16 $\left \frac{y^2}{x^2 z^4} \right $	c) $\frac{16}{5} \left \frac{y}{x z^2} \right $		d) $\frac{16}{5} \left \frac{xz^2}{y} \right $	
5.	Which of the foll	owing should be a	added to make $x^4 + 6$	64a perfect s	square	
	a) 4x ²	b) 16x ²	c) $8x^2$		$d) - 8x^2$	
6.	The solution of (2	$(2x-1)^2 = 9 \text{ is equ}$	al to			T
	a) – 1	b) 2	c) – 1, 2	d) none o	of these	່ນລາ ສແນສ
7.	Graph of a liner p	olynomial is a			· · · · ·	ACT SICH
	a) straight line	b) circle	c) parabola		d) hyperbola	
8.	The number of po with the X axis is		on of the quadratic b) 1 c) 0 or		$x^{2} + 4x + 4$ d) 2	
9.	The values of a a	nd b if $4x^4 - 24x^3 + $	$+76x^{2}+ax+b$ is a	perfect squa	re are	
	a) 100, 120	b) 10,	12 c) – 12	20, 100	d) 12, 10	
10.	$y^2 + \frac{1}{y^2}$ is not equal	al toa) $\frac{y^4 + 1}{y^2}$	b) $\left(y + \frac{1}{y}\right)^2$ c) $\left(y + \frac{1}{y}\right)^2$ c)	$\left(-\frac{1}{y}\right)^2 + 2$ of	$i)\left(y + \frac{1}{y}\right)^2 - 2$	

II	Answer the following : (any 5)	5 x 2 = 10
11.	Find the square root of $9x^2 - 24xy + 30xz - 40yz + 25z^2 + 30xz - 40yz + 25z^2 + 30yz + 30yz + 25z^2 + 30yz + 3$	16y ²
12.	Simplify : $\frac{4x}{x^2 - 1} - \frac{x + 1}{x - 1}$	
13.	Simplify : $\frac{1}{x^2+2}$ from $\frac{2x^3+x^2+3}{(x^2+2)^2}$	
14.	Find the quadratic equation whose sum and product of roo	ts are $\frac{5}{3}$, 4
15.	Solve : $x^2 + 2x - 2 = 0$ by formula method.	
16.	Determine the nature of roots for the quadratic equation 15x	$^{2} + 11 x + 2 = 0$
Ш	Answer the following : (any 4)	4 x 5 = 20
17.	If the roots of the equation $(c^2 - ab) x^2 - 2(a^2 - bc) x + b$ real and equal prove that either $a = 0$ (or) $a^3 + b^3 + c^3 = 3$	
18.	Find the values of a and b if give polynomial is a perfect	square.
	$4x^4 - 12x^3 + 37x^2 + bx + a$	
19.	If A = $\frac{x}{x+1}$, B = $\frac{1}{x+1}$ prove that $\frac{(A+B)^2 + (A-B)^2}{A \div B} = \frac{2(x^2+A)^2}{x(x+1)^2}$	$(\frac{1}{1})^{2}$
20.	Simplify : $\frac{1}{x^2 - 5x + 6} + \frac{1}{x^2 - 3x + 2} - \frac{1}{x^2 - 8x + 15}$	
21.	A ball roots down a slope and travels a distance $d = t^2 - 0$ seconds. Find the time when the distance travelled by the b feet.	
IV	Answer the following (Graph)	1 x 10 = 10
22.	Discuss the nature of solution of the quadratic equation $x^2 - 4$	4x + 4 = 0
	[OR]	
	Discuss the nature of solution of the quadratic equation $x^2 +$	x - 12 = 0

X UNIVERSAL MAT HR. SEC. SCHOOL UT 04/A&C UNIT TEST - 4 EXAM NO -4 ALGEBRA - I TIME : 1.30 MATHEMATICS - A & C MARKS : 50				
Ι	Fill in the blanks: $10 \ge 10 = 10$			
1.	The solution of the system $x + y - 3z = -6$, $-7y + 7z = 7$, $3z = 9$ is			
	a) $x = 1, y = 2, z = 3$ b) $x = -1, y = 2, z = 3$			
	c) $x = -1, y = -2, z = 3$ d) $x = 1, y = 2, z = 3$			
2.	If $(x-6)$ is the HCF of $x^2 - 2x - 24$ and $x^2 - kx - 6$ then the value of k is			
	a) 3 b) 5 c) 6 d) 8			
3.	÷ is			
	a) b) c) d)			
4.	The square root of is equal to			
	a) b) 16 c) d)			
5.	Which of the following should be added to make $x^4 + 64$ a perfect square			
	a) $4x^2$ b) $16x^2$ c) $8x^2$ d) $-8x^2$			
6.	The solution of $(2x - 1)^2 = 9$ is equal to			
0.	a) -1 b) 2 c) -1 , 2 d) none of these			
7.	Graph of a linear polynomial is a			
	a) straight line b) circle c) parabola d) hyperbola			
8.	The number of points of intersection of the quadratic polynomial $x^2 + 4x + 4$ with the X axis is			
	a) 0 b) 1 c) 0 or 1 d) 2			
9.	The general form of linear equation in two variables x and y is			
10.	What is the value of x in $3 = 9$?			

II Answer the following : $5 \ge 2 = 10$

11.	Solve : $2x - 3y = 6$; $x + y = 1$	
12.	Find the LCM of $-9a^3 b^2$, $12a^2b^2c$	
13.	Reduce the rational expression to its lowest form	
14.	Find the excluded value:	
15.	Simplify : x	
III	Answer the following : (any 4)	$4 \ge 5 = 20$
16.	Find the square root of $64x^4 - 16x^3 + 17x^2 - 2x + 1$	
17.	Find the GCD of the polynomials $x^3 + x^2 - x + 2$ and $2x^3 - x^2 - x + 2$	$-5x^2 + 5x - 3$
18.	Solve : $x + 2y - z = 5$; $x - y + z = -2$; $-5x - 4y + z = -11$	
19.	If $x =$ and $y =$ find the values of $x^2 y^{-2}$	
20.	Simplify : ÷	
IV	Answer the following (Graph)	1 x 10 = 10

21. Discuss the nature of the solution of the quadratic equation : $x^2 - 9x + 20 = 0$

தந்தை ஹேன்ஸ் இருவுட்கு இல் இது பிருவுட்கு குறையில் குறைய

Matrices and Rows

தேர்வுஎண்: 10

a _{ij} "ith row" jth column"		ipt entries		numbers. We on in the array $\mathcal{L} \times \mathcal{R}$	பாடம் பாடத்தலைப்பு	: கணிதம் : 3.இயற்கணிதம்
$A = \begin{bmatrix} a_{00} \\ a_{21} \\ a_{31} \\ \vdots \\ a_{m1} \end{bmatrix}$	$egin{array}{c} a_{12} \ a_{22} \ a_{32} \ dots \ a_{m2} \end{array}$	a_{13} a_{23} a_{33} a_{m3}	 $egin{aligned} a_{1n} & & \ a_{2n} & & \ a_{3n} & & \ \vdots & & \ a_{mn} \end{bmatrix}$	Matrices are identified by their size.	வகுப்பு தேதி மதிப்பெண்கள் காலம்	: 10-D : 10/10/2019, வியாழக் கிழமை. : 25 : 1:00 மணி

அனைத்து வினாக்களுக்கும் விடையளிக்கவும்:

5 X 2 = 10

1.
$$\begin{pmatrix} a-b & 2a+c \\ 2a-b & 3c+d \end{pmatrix} = \begin{pmatrix} 1 & 5 \\ 0 & 2 \end{pmatrix}$$
 என்ற அணி சமன்பாட்டிலிருந்து a, b, c, d

மதிப்புகளைக் காண்க.

2.
$$A = \begin{pmatrix} \sqrt{7} & -3 \\ -\sqrt{5} & 2 \\ \sqrt{3} & -5 \end{pmatrix}$$
 எனில், $-A$ -யின் நிரை நிரல் மாற்று அணியைக் காண்க
3. $A = \begin{pmatrix} 5 & 2 & 2 \\ -\sqrt{17} & 0.7 & \frac{5}{2} \\ 8 & 3 & 1 \end{pmatrix}$ எனில், $(A^T)^T = A$ என்பதனைச் சரிபார்க்க.
4. $A = \begin{pmatrix} 1 & 9 \\ 3 & 4 \\ 8 & -3 \end{pmatrix}, B = \begin{pmatrix} 5 & 7 \\ 3 & 3 \\ 1 & 0 \end{pmatrix}$ எனில், பின்வருவனவற்றைச் சரிபார்க்க.
 $A + B = B + A$
5. $A = \begin{pmatrix} 1 & 9 \\ 3 & 4 \\ 8 & -3 \end{pmatrix}, B = \begin{pmatrix} 5 & 7 \\ 3 & 3 \\ 1 & 0 \end{pmatrix}$ எனில், பின்வருவனவற்றைச் சரிபார்க்க.
 $A + (-A) = (-A) + A = O.$

II) அனைத்து வினாக்களுக்கும் விடையளிக்கவும்:
 3 x 5 = 15

 1.
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ எனில், $A^2 - (a + d)A = (bc - ad)I_2$ என நிறுவுக.

 2. $A = \begin{pmatrix} 5 & 2 & 9 \\ 1 & 2 & 8 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 7 \\ 1 & 2 \\ 5 & -1 \end{pmatrix}$ எனில், $(AB)^T = B^T A^T$ என்பதைச் சரிபார்க்கவும்.

 3. $A = \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix}$ எனில், $A^2 - 5A + 7I_2 = 0$ என நிறுவுக.

	UNIVERSAL MAT HR. SEC. SCHOOL 6/A&C UNIT TEST - 6 EXAM NO -6 ME : 1.30 MATHEMATICS - A & C MARKS : 50
Ι	Fill in the blanks: $10 \times 1 = 10$
1.	In \triangle LMN, \angle L = 60°, \angle M = 50°. If \triangle LMN ~ \triangle PQR then the value of \angle R is a) 40° b) 70° c) 30° d) 110°
2.	If \triangle ABC is an isosceles triangle with $\angle C = 90^{\circ}$ and AC = 5 cm then AB isa) 2.5 cm b) 5 cm c) 10 cm d) $5\sqrt{2}$ cm
3.	How many tangents can be drawn to the circle from an exterior point?
	a) one b) two c) infinite d) 0
4.	If in \triangle ABC DE BC. AB = 3.6 cm, AC = 2.4 cm, AD = 2.1 cm then the length of AE is a) 1.4 cm b) 1.8 cm c) 1.2 cm d) 1.05 cm
5.	A tangent is perpendicular to the radius at the
	a) centre b) point of constant c) infinity d) chord
6.	If in triangles ABC and EDF $\frac{AB}{DE} = \frac{BC}{FD}$ then they will be similar, when (a) $\angle B = \angle E$ (b) $\angle A = \angle D$ (c) $\angle B = \angle D$ (d) $\angle A = \angle F$
7.	The two tangents from an external point P to a circle with centre at O are PA and PB. If $\angle APB = 70^{\circ}$ then the value of $\angle AOB$ is
	a) 100° b) 110° c) 120° d) 130°
8.	In a \triangle ABC, AD is the bisector of \angle ABC. If AB = 8 cm, BD = 6 cm and DC = 3 cm then the length of side AC is
	a) 6 cm b) 4 cm c) 3 cm d) 8 cm
9.	If PR = 26 cm, QR = 24 cm, $\angle PAQ = 90^{\circ}$,
	$PA = 6 \text{ cm}$ and $QA = 8 \text{ cm}$. Find $\angle PQR =$
	a) 80° b) 85° c) 75° d) 90°
10.	A straight line that touches a circle at a common point is called a

a) radius b) diameter c) tangent d) chord

- II Answer the following : $5 \ge 2 = 10$
- 11. If QA and PB are perpendicular to AB. If AO = 10 cm, BO = 6 cm and PB = 9cm. Find AQ.

- 12. If \triangle ABC is similar to \triangle DEF such that BC = 3cm, EF = 4 cm and area of \triangle ABC = 54 cm². Find the area of \triangle DEF.
- 13. If AD is the bisector of $\angle A$. If BD = 4cm, DC = 3 cm, and AB = 6 cm find AC.
- 14. If radii of two concentric circles are 4 cm and 5 cm then find the length of the chord of one circle which is a tangent to the other circle ?
- 15. Find the length of the tangent drawn from a point whose distance from the centre of a circle is 5 cm and radius of the circle is 3 cm.
- IIIAnswer the following : $4 \ge 20$ 111 $2 \ge 10$
- 16. State and prove Alternate segment theorem.
- 17. State and prove Pythagoras theorem.
- 18. State and prove Angle Bisector Theorem.
- 19. State and Prove Thales theorem.
- IV Answer the following (Practical Geometry) $1 \ge 10$
- 20. Construct a \triangle PQR such that QR = 6.5 cm, \angle P = 60° and the altitude from P to QR is of length 4.5 cm. [OR] Construct a \triangle PQR which the base PQ = 4.5 cm, \angle R = 35° and the median from R to RG is 6 cm.

T	IME : 1.30 MATHEMATICS - B & D MARKS : 50	III Answer the following : $4 \times 5 =$
Ι	Choose the best answer: $10 \ge 10$	11. State and Prove Thales theorem.
1.	The perimeters of two similar triangles \triangle ABC and \triangle PQR are 36 cm	12. State and prove Angle Bisector Theorem.
	and 24 cm respectively. If $PQ = 10$ cm, then the length of AB is	13. State and prove Pythagoras theorem.
	a) $6\frac{2}{3}$ cm b) $\frac{10\sqrt{6}}{3}$ cm c) $66\frac{2}{3}$ cm d) 15 cm	14. State and prove Alternate segment theorem.
2.	Two ploles of heights 6m and 11m stand vertically on a plane ground. If	IV Answer the following (Practical Geometry) 2 x 10 =
	the distance between their feet is 12 m, what is the distance between their tops ? a) 13 m b) 14 m c) 15 m d) 12.8 m	15. Construct a \triangle PQR in which PQ = 8 cm \angle R = 60° and the median R
3.	In the given figure PR = 26 cm, QR = 24 cm, $\angle PAQ = 90^{\circ}$,	from R to PQ is 5.8 cm. Find the length of the altitude from R to P
	$PA = 6 \text{ cm} \text{ and } QA = 8 \text{ cm}.$ Find $\angle PQR = $	[OR]
	a) 80° b) 85° c) 75° d) 90°	Construct a triangle \triangle PQR such that QR = 5 cm, \angle P = 30° and the a
		from P to QR is of length 4.2 cm.
4.	If in \triangle ABC DE BC. AB = 3.6 cm, AC = 2.4 cm, AD = 2.1 cm then the length of AE is a) 1.4 cm b) 1.8 cm c) 1.2 cm d) 1.05 cm	16. Discuss the nature of solution of the quadratic equation $x^2 - 9x + 20 =$
5.	How many tangents can be drawn to the circle from an exterior point?	[OR]
	a) one b) two c) infinite d) 0	Discuss the nature of solution of the quadratic $(2x - 3)(x + 2) = 0$
6.	In \triangle LMN, \angle L = 60°, \angle M = 50°. If \triangle LMN ~ \triangle PQR then the value of \angle R is a) 40° b) 70° c) 30° d) 110°	
7.	If \triangle ABC is an isosceles triangle with $\angle C = 90^{\circ}$ and $AC = 5$ cm then 5010	0///D//// ******************************
	AB is a) 2.5 cm b) 5 cm c) 10 cm d) $5\sqrt{2}$ cm	SIG T
8.	In a \triangle ABC, AD is the bisector of \angle ABC.If AB=8cm, BD=6cm and DC=3cm then the length of side AC isa) 6 cm b) 4 cm c)3 cm d)8 cm	
9.	A tangent is perpendicular to the radius at the	
	a) centre b) point of constant c) infinity d) chord	
10.	The two tangents from an external point P to a circle with centre at O are PA and PB. If $\angle APB = 70^{\circ}$ then the value of $\angle AOB$ is	
	a) 100° b) 110° c) 120° d) 130°	

UT 03/B&D UNI	SAL MAT HR. SEC. SCHO Γ TEST - 3 EXAM NO -3 ATHEMATICS - B & D MATRICES		12. Verify that $A^2 = I$ when $A = \begin{bmatrix} 5 & -4 \\ 6 & 5 \end{bmatrix}$ 13. If a matrix has 18 elements, what are the possible orders it can have?
have 2. If number of columns	$B = 3 \times 4$ matrix how many col and rows are not equal in a ma		What if it has 6 elements.? 14. If $A = \begin{bmatrix} 2 & 5 \\ 4 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 1 & -3 \\ 2 & 5 \end{bmatrix}$ find AB, BA and check if AB = BA? 15. If $A = \begin{bmatrix} 1 & 9 \\ 3 & 4 \\ 8 & -3 \end{bmatrix}$, $B = \begin{bmatrix} 5 & 7 \\ 3 & 3 \\ 1 & 0 \end{bmatrix}$ then verify that $A + B = B + A$
to be a 3. If A = $\begin{bmatrix} 1 & 3 & 5 & 7 \\ 2 & 4 & 6 & 8 \\ 9 & 11 & 13 & 15 \end{bmatrix}$ 4. Transpose of a column m	then the order of the matrix	A T =	III Answer the following : 16. Solve for x, y $\begin{bmatrix} x^2 \\ y^2 \end{bmatrix} + 2 \begin{bmatrix} -2x \\ -y \end{bmatrix} = \begin{bmatrix} 5 \\ 8 \end{bmatrix}$
	$X + \begin{bmatrix} 1 & 3 \\ 5 & 7 \end{bmatrix} = \begin{bmatrix} 5 & 7 \\ 9 & 5 \end{bmatrix}$ is if it has only one co		17. If $A = \begin{bmatrix} 1 & 1 \\ -1 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 2 \\ -4 & 2 \end{bmatrix}$, $C = \begin{bmatrix} -7 & 6 \\ 3 & 2 \end{bmatrix}$ verify that $A (B+C) = AB + AC$ 18. If $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$ show that $A^2 - 5A + 7I_2 = 0$
called a	ich all the leading diagonal elem d order of $B = 3 \times 2$ then the or	ES.	19. If $A = \begin{bmatrix} 5 & 2 & 9 \\ 1 & 2 & 8 \end{bmatrix} B = \begin{bmatrix} 1 & 7 \\ 1 & 2 \\ 5 & -1 \end{bmatrix}$ verify that $(AB)^{T} = B^{T} A^{T}$
matrix $AB = $ 9. If A is order of 4 x 2 and 10. 894	B is order of 2×2 then the or 3 2×5 write the element of a_{32}	der of AB =රුගි අල	IV Answer the following (Graph) $1 \ge 10$ 20. Discuss the nature of the solution of the quadratic equation $x^2 + 2x + 5 = 0$ **********
6 8 -11 II Answer the following		5 x 2 = 10	

11. If $A = \begin{bmatrix} 5 & 2 & 2 \\ -\sqrt{17} & 0.7 & 5/2 \\ 8 & 3 & 1 \end{bmatrix}$ then verify $(A^{T})^{T} = A$. PREPARED BY : U.KARTHIKKUMAR., M.A., M.SC., M.Ed., MATHS ., PG TEACHER IN MATHS. UNIVERSAL MAT HR SEC SCHOOL., TIRUPUR-641664

kural.com

	UNIVERSAL MAT HR. SEC. SCHOO 08/A&C UNIT TEST - 8 EXAM NO - 8 IME : 1.30 MATHEMATICS - A & C	WWW.Kalviku
Ι	Answer the following :	7 x 2 = 14
1.	The volumes of two cones of the same radius are 3600 Find the ratio of heights.	cm^{3} and 5040 cm^{3} .
2.	If the ratio of radii of two spheres is 4:7. Find the ratio	of their volumes.
3.	A solid sphere and a solid hemisphere have equal total	surface area.
	Prove that the ratio of their volumes is.	
4.	A right circular cylinder just enclose a sphere of radius	r units.
	Calculate the CSA of cylinder.	
5.	A metallic sphere of radius 16cm is melted and recast	into small spheres
	each of radius 2 cm. How many small spheres can be o	btained?
6.	A cone of height 24cm is made up of modeling clay. A ch	ild reshapes it in
	the form of a cylinder of same radius as cone. Find the h	eight of cylinder.
7.	A conical flask is full of water. The flask has base rad	ius r units and
	height h units, the water poured into a cylindrical flask	of base radius xr
	units. Find the height of water in the cylindrical flask.	
Π	Answer the following : (any 4)	$4 \ge 5 = 20$
8.	A toy is in the shape of a cylinder surmounted by a h	emisphere. The 56061 A(
	height of the joy is 25 cm. Find the TSA of the joy if	its common
	diameter is 12 cm.	
9.	A vessel is in the form of a hemispheral bowl mounted	l by a hollow
	cylinder. The diameter is 14cm and the height of the ve	essel is 13 cm.

- cylinder. The diameter is 14cm and the height of the vessel is 13 cm. Find the capacity of the vessel. A capsule is in the shape of a cylinder with two hemisphere stuck to 10.
- each of its ends. If the length of the entire caosule is 12 mm and the diameter of the capsule is 3 mm, how much medicine it can hdd?

- Water is flowing at the rate of 15km per hour through a pipe of 11. diameter 14cm into a rectangular tank which is 50 m long and 44m wide. Find the time in which the level of water in the tanks will rise by 21 cm.
- A solid right circular cone of diameter 14cm and height 8 cm is melted 12. to form a hollow sphere. If the ecxternal diameter of the sphere is 19 cm. Find the internal diameter.
- Answer the following (Practical Geometry and Graph)2 x 8 = 16III
- Draw a triangle ABC of base BC = 8 cm, $\angle A = 60^{\circ}$ and the bisector of 13. $\angle A$ meets BC at D such that BD = 6 cm.
- Draw the graph of $y=x^2+4x+3$ and hence find the roots of $x^2+x+1=0$ 14.

X UT 08	UNIVERSAL MAT HR. SEC. SCHOOL 3/B&D UNIT TEST - 8 EXAM NO -8			
	$E: 1.30$ MATHEMATICS - B & DMARKS : 50Choose the best answer : $10 \times 1 = 10$	14.	A small cylindrical metal of radius 5 cm and height	4 cm is immersed
	The height of a right circular cone whose radius is 5 cm and slant	15.	completely. Calculate the raise of the water in the gla The volume of a solid right circular cone is 11088cm	
	neight is 13 cm will be a)12 cm b)10 cm c)13 cm d)5 cm	16.	24 cm then find the radius of the cone. If the TSA of a cone of radius 7 cm is 704 cm^2 , the	en find its slant
	f the radius of the base of a cone is tripled and the height is doubled hen the volume is		height.	
a	a) made 6 times b) made 18 times c) made 12 times d) unchanged The total surface area of a hemi - sphere is how much times the square	III	Answer the following : (any 4)	$4 \ge 5 = 20$
	of its radius	17.	A cylindrical drum has a height of 20 cm and base Find its CSA and TSA.	radius of 14 cm.
	The curved surface area of a right circular cone of height 15cm and base liameter 16 cm isa) 60π cm ² b) 68π cm ² c) 120π cm ² d) 136π cm ²	18.	A container open at the top is in the form of a frus height 16cm with radii of its lower and upper ends a	are 8 cm and 20 cm
5. A	A solid sphere of radius x cm is melted and cast into a shape of a solid cone of same radius. The height of the cone is		respectively. Find the cost of milk which can complet at the rate of $\overline{\mathbf{\xi}}40$ per litre.	ely fill a containe
a	a) 3x cm b) x cm c) 4 x cm d) 2 x cm A shuttle cock used for playing badminton has the shape of the	19.	The external radius and the length of a hollow wood and 13 cm respectively. If its thickness is 4 cm then	
с	combination of b) a hemisphere and a cone	20.	If the radii of the circular ends of a frustum which a 28 cm and 7 cm, find the volume of the frustum.	is 45 cm high are
с	(c) a sphere and a cone d) frustum of a cone and a hemisphere (in cm ³) of the greatest sphere that can be cut off from a	21.	A girl wishes to prepare birthday caps in the form o cones for her birthday party, using a sheet of paper	
с	cylindrical log of wood of base radius 1 cm and height 5 cm is a) $4/3 \pi$ b) $10/3 \pi$ c) 5π d) $20/3 \pi$		5720cm ² how many caps can be made with radius 5c	
8. Т	The height and radius of the cone of which thet frustum is a part are r_1 units and r_1 units respectively. Height of the frustum is h_2 units and	IV	Answer the following (Practical Geometry)	$1 \ge 10 = 10$
r	radius of the smaller base is r_2 units. If h_2 : $h_1 = 1 : 2$ then $r_2 : r_1$ is a) 1 : 3 b) 1 : 2 c) 2 : 1 d) 3 : 1	22.	Draw a circle of diameter 6 cm from a point P, which from its centre. Draw the two tangents PA and PB t	
9. T h	The ratio of the volumes of a cylinder, a cone and a sphere, if each base the same diameter and same height is	৯(ি দী	measure their lengths.	
	a) 1:2:3 b) 2:1:3 c) 1:3:2 d) 3:1:2 the radius of the base of a right circular cylinder is halved keeping the		**********	
san	ne height, then the ratio of the volume of the cylinder thus obtained to volume of original cylinder is			
	1:2 b) $1:4$ c) $1:6$ d) $1:8$			
II A	Answer the following : (any 5) $5 \ge 2 = 10$			

diameter of the cylinder.

12.

13.

Find the diameter of a sphere whose surface area is 154 m^2

If the ratio of radii of two spheres is 4 : 7 find the ratio of their volumes.

	UNIVERSAL MAT HR. SEC. SCH 09/A&C UNIT TEST - 9 EXAM NO - ME : 1.30 MATHEMATICS - A & C		III	Answer the following :	4 x 5 = 20
Ι	Fill in the blanks :	8 x 1 = 8	16.	A function f: $[-5, 9) \rightarrow R$ is defined as	
 1. 2. 3. 4. 5. 6. 7. 8. 	If f: A \rightarrow B is a bijective function and if n (B) = 7, If n (A x B) = 6 and A = { 1, 3 } then n (B) = If numbers of columns and rows are not equal in a said to be The solution of $(2x - 1)^2 = 9$ is equal to $\frac{3y-3}{y} \div \frac{7y-7}{3y^2} =$ If f(x) = 2x ² and g(x) = $\frac{1}{3x}$ then fog = If (x - 6) is the HCF of x ² - 2x - 24 and x ² - kx - 6 is A tangent is perpendicular to the radius at the	matrix then it is	17. 18. 19. IV	$f(x) = \begin{cases} 6x + 1, & -5 \le x < 2\\ 5x^2 + 1, & 2 \le x < 6\\ 3x - 4, & 6 \le x \le 9 \end{cases}$ Find : i) $f(-3) + f(2)$ ii) $2 f(4) + f(2)$ If $A = \begin{bmatrix} 1 & 1\\ -1 & 3 \end{bmatrix} B = \begin{bmatrix} 1 & 2\\ -4 & 2 \end{bmatrix}$, $C = \begin{bmatrix} -7 & 6\\ 3 & 2 \end{bmatrix}$ Find the GCD of the polynomials $x^3 + x^2 - x$ Find the values of a and b if give polynom $4x^4 - 12 x^3 + 37 x^2 + bx + a$ Answer the following (Graph)	verify that A (B+C)=AB+AC x + 2 and $2x^{3} - 5x^{2} + 5x - 3$
0.	A tangent is perpendicular to the fadius at the		Sy 1		
II	Answer the following : f(x+2) = f(x)	7 x 2 = 14	20.	Draw the graph of $y = x^2 + x - 2$ and hence [OR] Draw the graph of $y = x^2 - 4x + 3$ and use i	
II 9. 10.	Answer the following : Let $f(x) = 2x + 5$. If $x \neq 0$ then find $\frac{f(x+2) - f(2)}{x}$ Show that function $f: N \rightarrow N$ defined by $f(x) = 2x$ not onto.			[OR]	
9. 10.	Let $f(x) = 2x + 5$. If $x \neq 0$ then find $\frac{f(x+2) - f(2)}{x}$ Show that function $f: N \rightarrow N$ defined by $f(x) = 2x$	- 1 is one - one but		[OR] Draw the graph of $y = x^2 - 4x + 3$ and use i	
9. 10. 11.	Let $f(x) = 2x + 5$. If $x \neq 0$ then find $\frac{f(x+2) - f(2)}{x}$ Show that function $f: N \rightarrow N$ defined by $f(x) = 2x$ not onto.	- 1 is one - one but		[OR] Draw the graph of $y = x^2 - 4x + 3$ and use i	
9. 10. 11.	Let $f(x) = 2x + 5$. If $x \neq 0$ then find $\frac{f(x+2) - f(2)}{x}$ Show that function $f: N \rightarrow N$ defined by $f(x) = 2x$ not onto. If $A = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 0 \\ 1 & 3 \end{bmatrix}$ find Ab and BA. Check in	- 1 is one - one but		[OR] Draw the graph of $y = x^2 - 4x + 3$ and use i	
 9. 10. 11. 12. 	Let $f(x) = 2x + 5$. If $x \neq 0$ then find $\frac{f(x+2) - f(2)}{x}$ Show that function $f: N \rightarrow N$ defined by $f(x) = 2x$ not onto. If $A = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 0 \\ 1 & 3 \end{bmatrix}$ find Ab and BA. Check in If $A = \begin{bmatrix} 5 & 2 & 2 \\ -\sqrt{17} & 0.7 & 5/2 \\ 8 & 3 & 1 \end{bmatrix}$ then verify $(A^T)^T = A$	- 1 is one - one but		[OR] Draw the graph of $y = x^2 - 4x + 3$ and use i	

X UNIVERSAL MAT HR. SEC. SCHOOL UT 09/B&D UNIT TEST - 9 EXAM NO - 9 TIME : 1.30 MATHEMATICS - B & D MARKS : 50	13.	Simpli
I Choose the best answer : $10 \times 1 = 10$	14.	If A=
 If n (A x B) = 6 and A = { 1, 3 } then n (B) = a) 1 b) 2 c) 3 d) 6 If { (a, 8), (6, b) } represents an identify function then the value of a 	15. 16.	If A = Find t
and b respectively. a) $(8, 6)$ b) $(8, 8)$ c) $(6, 8)$ d) $(6, 6)$ 3. The square root of $\frac{256x^8y^4z^{10}}{25x^6y^6z^6}$	III	Answ
a) $\frac{16}{5} \left \frac{x^2 z^4}{y^2} \right $ b) $16 \left \frac{y^2}{x^2 z^4} \right $ c) $\frac{16}{5} \left \frac{y}{x z^2} \right $ d) $\frac{16}{5} \left \frac{x z^2}{y} \right $	17. 18.	If 9x ⁴ If A
4. In a $\triangle ABC$, $AD \perp \angle ABC$. If $AB = 8 \text{ cm}$, $BD = 6 \text{ cm}$, and $DC = 3 \text{ cm}$ the length of side AC a) 6 cm b) 4 cm c) 3 cm d) 8 cm	19.	A fund
5. Find the matrix x if $2X + \begin{bmatrix} 1 & 3 \\ 5 & 7 \end{bmatrix} = \begin{bmatrix} 5 & 7 \\ 9 & 5 \end{bmatrix}$ is		f(x) =
 6. A tangent is perpendicular to the radius at the		Find ,
a) 3 b) 5 c) 6 d) 8	20.	Let f :
8. $f(x) = (x + 1)^3 - (x - 1)^3$ represents a function which is a) linear b) cubic c) reciprocal d) quadratic	ID AL	B = { (ii) a t
9. If f: $A \rightarrow B$ is a bijective function and if $n(B) = 7$ then $n(A) =$ a) 7 b) 49 c) 1 d) 14	IV	Answ
10. Graph of a linear polynomial is aa) straight line b) circle c) parabola d) hyperbola	21.	Draw
II Answer the following : $6 \ge 2 = 12$		Draw
 11. If A = { 1, 3, 5 } and B = { 2, 3 } then find A x B and B x A. 12. Find the value of K, if f(x) = 2x - K, g(x) = 4x + 5 then find fog = gof. 		
12. The use value of K, if $I(x) = 2x - K$, $g(x) = 4x + 3$ then the $I0g = g0I$.		

13.	Simplify: $\frac{5t^3}{4t-8} = x \frac{6t-12}{10 t}$					
14.	If $A = \begin{bmatrix} 5 & 2 & 2 \\ -\sqrt{17} & 0.7 & 5/2 \\ 8 & 3 & 1 \end{bmatrix}$ then verify $(A^{T})^{T} = A$					
15.	If $A = \begin{bmatrix} 2 & 5 \\ 4 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 1 & -3 \\ 2 & 5 \end{bmatrix}$ find AB and BA. Check if $AB = BA$?					
16.	Find the square root: $256(x-a)^8(x-b)^4(x-c)^{16}(x-d)^{20}$					
III	Answer the following : $4 \ge 5 = 20$					
17.	If $9x^4 + 12x^3 + 28x^2 + ax + b$ is a perfect square. Find the value of a and b.					
18.	If $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$ show that $A^2 - 5A + 7I_2 = 0$					
19.	A function $f: R \to R$ is defined by					
	$\begin{cases} 2x + 7, x \le -2 \end{cases}$					
	$f(x) = \begin{cases} x^2 - 2, & -2 \le x < 3 \end{cases}$					
	$f(x) = \begin{cases} 2x + 7, & x \le -2 \\ x^2 - 2, & -2 \le x < 3 \\ 3x - 2, & x \ge 3 \end{cases}$					
	Find, i) f (4) + 2 f (1) ii) $\frac{f(1) - 3f(4)}{f(-3)}$					
20.	Let f :A \rightarrow B be a function defined by f (x)= $\frac{x}{2}$ -1 where A = {2, 4, 6, 10, 12}					
	$B = \{0, 1, 2, 4, 5, 9\}$ represent f by i) A set of ordered pairs					
து	ii) a table iii) an arrow diagram iv) a graph					
IV	Answer the following (Graph) $1 \ge 8$					
21.	Draw the graph of $y = x^2 - 4x + 3$ and use it to solve $x^2 - 6x + 9 = 0$					
	[OR]					
	Draw the graph of $y = x^2 + 3x - 4$ and hence solve $x^2 + 3x - 4 = 0$					

10TH MATHS

Х	UN	IVERSAL MA	AT HR. SEC. SO	CHOOL			
UT 1	0/A&C	UNIT TEST	-10 EXAM N	O - 10			
TI	ME: 1.30	MATHEMA	ATICS - A & C	MARKS : 50			
Ι	Choose the con	rect answer :		8 x 1 = 8			
1.	-		8,	8 is			
	a) 0 b) 1	c) 8	d) 3				
2.	Variance of first	20 natural num	bers is				
	a) 32.25	b) 44.25	c) 33.25	d) 30			
3.	If the mean and	co-efficient of v	variation of a data	are 4 and 87.5% then	n		
	the S.D is	a) 3.5	b) 3	c) 4.5 d) 2.5			
4.	The mean of 10	0 observations is	s 40 and their S.D	is 3. The sum of			
	squares of all de	eviations is					
	a) 40000	b) 160900	c) 160000	d) 30000			
5.	Probability of su	re event is					
	a) 0	b) 1	c) 0.1	d) 2	-		
6.	A page is select	ed at random fro	om a book. The p	robability that the digi	t		
	at units place of the page number choosen is less than 7 is						
	a) 3/10	b) 7/10	c) 3/9	d) 7/9			
7.	If a letter is choo	sen at random fro	om the English alp	habets { a, b, \dots, z }			
	then the probability that the letter chosen precedes x.						
	a)12/13	b) 1/13	c) 23 / 16	d) 3 / 26			
8.	If the S.D of x	, y, z is p then t	he S.D of $3x + 5$,	3y + 5, 3x +z is			
	a) 3p + 5	b) 3p	c) p + 5	d) 9p + 15			
II	Answer the follo	owing :		7 x 2 = 14			
9.	Find the range a	and co-efficient of	of range: 63, 89,	98, 125, 79, 108, 117, 68	8		
10.	The range of a	set of data is 13	3.67 and the larges	st value is 70.08. Find			

- the smallest value.
- 11. Find the standard deviation of first 21 natural numbers.

- 12. The mean of a data is 25.6 and its co efficient of variation 18.75. Find the standard deviation.
- 13. If n = 5, $\bar{x} = 6$, $\Sigma x^2 = 765$ then calculate the co-efficient of variation.
- 14. If P (A) = 0.37, P (B) = 0.42, P (A \cap B) = 0.09 then find P (A \cup B).
- 15. Two coins are tossed together. Waht is the probability of getting different faces on the coins?
- III Answer the following : (any 4) $4 \ge 5 = 20$
- 16. Find the mean and variance of the first 'n' natural numbers.
- 17. The marks scored by the students in a sliptest are given below:

f 7 3 5 9 5	Х	4	6	8	10	12
	f	7	3	5	9	5

Find the standard deviation.

- 18. Find the co-efficient of 24, 26, 33, 37,29, 31.
- 19. Two dice are rolled. Find the probability that the sum of outcomes isa) equal to 4b) greater than 10c) less than 13
- 20. A card is drawn from of 52 cards . Find the probability of getting a king or a heart or a red card.
- IV Answer the following (Graph) $1 \ge 8$
- 21. Draw the graph of $y = x^2 + 3x + 2$ and use it solve $x^2 + 2x + 1 = 0$. [OR] Draw the graph of $y = 2x^2 - 3x - 5$ and hence solve $2x^2 - 4x - 6 = 0$
