$10^{\text {th }}$ MATHS - GEOMETRY / GRAPH - Question Bank

Prepared By: M.PALANIYAPPAN, MSc. BEd, MPhil
SGHSS, NERKUPPAI. Mobile: 9942904874

GEOMETRY - Constructions

I. SIMILAR TRIANGLES :- (Big to Small)

1. Construct a triangle similar to a given triangle $P Q R$ with its sides equal to $\frac{3}{5}$ of the corresponding sides of the triangle $P Q R$ (scale factor $\frac{3}{5}<1$)
2. Construct a triangle similar to a given triangle $P Q R$ with its sides equal to $\frac{2}{3}$ of the corresponding sides of the triangle $P Q R$ (scale factor $\frac{2}{3}$)
3. Construct a triangle similar to a given triangle $L M N$ with its sides equal to $\frac{4}{5}$ of the corresponding sides of the triangle $L M N$ (scale factor $\frac{4}{5}$)
II. SIMILAR TRIANGLES :- (Small to Big)
4. Construct a triangle similar to a given triangle $P Q R$ with its sides equal to $\frac{7}{4}$ of the corresponding sides of the triangle $P Q R$ (scale factor $\frac{7}{4}>1$)
5. Construct a triangle similar to a given triangle $A B C$ with its sides equal to $\frac{6}{5}$ of the corresponding sides of the triangle $A B C$ (scale factor $\frac{6}{5}$)
6. Construct a triangle similar to a given triangle $P Q R$ with its sides equal to $\frac{7}{3}$ of the corresponding sides of the triangle $P Q R$ (scale factor $\frac{7}{3}$)

III. TRIANGLES :- (When MEDIAN is given)

7. Construct a $\triangle P Q R$ in which $P Q=8 \mathrm{~cm}, \angle R=60^{\circ}$ and the median $R G$ from R to $P Q$ is 5.8 cm . Find the length of the altitude from R to $P Q$.
8. Construct a $\triangle P Q R$ in which $Q R=5 \mathrm{~cm}, \angle P=40^{\circ}$ and the median $P G$ from P to $Q R$ is 4.4 cm . Find the length of the altitude from P to $Q R$.
9. Construct a $\triangle P Q R$ in which the base $P Q=4.5 \mathrm{~cm}, \angle R=35^{\circ}$ and the median from R to $P Q$ is 6 cm .

IV. TRIANGLES :- (When ALTITUDE is given)

10. Construct a triangle $\triangle P Q R$ such that $Q R=5 \mathrm{~cm}, \angle P=30^{\circ}$ and the altitude from P to $Q R$ is of length 4.2 cm .
11. Construct a $\triangle P Q R$ such that $Q R=6.5 \mathrm{~cm}, \angle P=60^{\circ}$ and the altitude from P to $Q R$ is of length 4.5 cm .
12. Construct a triangle $\triangle A B C$ such that $A B=5.5 \mathrm{~cm}, \angle C=25^{\circ}$ and the altitude from C to $A B$ is 4 cm .
V. TRIANGLES :- (When the point of ANGLE BISECTOR is given)
13. Draw a triangle $A B C$ of base $B C=8 \mathrm{~cm}, \angle A=60^{\circ}$ and the bisector of $\angle A$ meets $B C$ at D such that $B D=6 \mathrm{~cm}$.
14. Draw a triangle $A B C$ of base $B C=5.6 \mathrm{~cm}, \angle A=40^{\circ}$ and the bisector of $\angle A$ meets $B C$ at D such that $C D=4 \mathrm{~cm}$.
15. Draw $\triangle P Q R$ such that $P Q=6.8 \mathrm{~cm}$, vertical angle 50° and the bisector of the vertical angle meets the base at D where $P D=5.2 \mathrm{~cm}$.

VI. TANGENTS TO A CIRCLE: (Using the Centre)

16. Draw a circle of radius 3 cm . Take a point P on this circle and draw a tangent at P.
17. Draw a tangent at any point R on the circle of radius 3.4 cm and centre at P ?
VII. TANGENTS TO A CIRCLE: (Using Alternate Segment Theorem) [or Tangent Chord theorem]
18. Draw a circle of radius 4 cm , At a point L on it draw a tangent to the circle using the alternate segment theorem.
19. Draw a circle of radius 4.5 cm . Take a point on the circle. Draw the tangent at that point using the alternate - segment theorem.

VIII. TANGENTS TO A CIRCLE: (Pair of Tangents or Two Tangents)

20. Draw a circle of diameter 6 cm from a point P, which is 8 cm away from its centre. Draw the two tangents $P A$ and $P B$ to the circle and measure their lengths.
21. Draw the two tangents from a point which is 10 cm away from the centre of a circle of radius 5 cm . Also, measure the lengths of the tangents.
22. Draw the two tangents from a point which is 5 cm away from the centre of a circle of diameter 6 cm . Also, measure the lengths of the tangents.
23. Take a point which is 11 cm away from the centre of a circle of radius 4 cm and draw the two tangents to the circle from the point.
24. Draw a tangent to the circle from the point P having radius 3.6 cm , and centre at O point P is at a distance 7.2 cm from the centre.

GRAPH

I. NATURE of the SOLUTIONS :- (Graphically)

Discuss the nature of solutions of the following quadratic equations:

1. $x^{2}+x-12=0$
2. $x^{2}-8 x+16=0$
3. $x^{2}+2 x+5=0$

Graph the following quadratic equations and state its nature of solutions:
4. $x^{2}-9 x+20=0$
5. $x^{2}-4 x+4=0$
6. $x^{2}+x+7=0$
7. $x^{2}-9=0$
8. $x^{2}-6 x+9=0$
9. $(2 x-3)(x+2)=0$

II. Solving QUADRATIC EQUATIONS :- (Through intersection of lines)

10. Draw the graph of $y=2 x^{2}$ and hence solve $2 x^{2}-x-6=0$.
11. Draw the graph of $y=x^{2}-4$ and hence solve $x^{2}-x-12=0$.
12. Draw the graph of $y=x^{2}+4 x+3$ and hence find the roots of $x^{2}+x+1=0$.
13. Draw the graph of $y=x^{2}+x-2$ and hence solve $x^{2}+x-2=0$.
14. Draw the graph of $y=x^{2}-4 x+3$ and use it to solve $x^{2}-6 x+9=0$.
15. Draw the graph of $y=x^{2}+x$ and hence solve $x^{2}+1=0$.
16. Draw the graph of $y=x^{2}+x-2$ and use it to solve $x^{2}+2 x+1=0$.
17. Draw the graph of $y=x^{2}+3 x-4$ and hence use it to solve $x^{2}+3 x-4=0$.
18. Draw the graph of $y=x^{2}-5 x-6$ and hence solve $x^{2}-5 x-14=0$.
19. Draw the graph of $y=2 x^{2}-3 x-5$ and hence use it to solve $2 x^{2}-4 x-6=0$.
20. Draw the graph of $y=(x-1)(x+3)$ and hence use it to solve $x^{2}-x-6=0$

III. SPECIAL GRAPH:- (Unit-5: Co-ordinate Geometry)

21. A mobile phone is put to use when the battery power is 100%. The percent of battery power ' y ' remaining after using the mobile phone for x hours is assumed as $y=-0.25 x+1$.
(Example - 5.27)
i) Draw a graph of the equation
ii) Find the number of hours elapsed if the battery power is 40%.
iii)How much time does it take so that the battery has no power?
22. You are downloading a song. The percent y (in decimal form) of mega bytes remaining to get downloaded in x seconds is given by $y=-0.1 x+1$. Find
i) graph the equation.
(Exercise 5.3 - Q.No.11)
Ii) the total MB of the song.
Iii) after how many seconds is 75% of the song gets downloaded.
Iv) after how many seconds the song will be downloaded completely.
